首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
Summary Our previous work showed that NADP+-dependent glutamate dehydrogenase from K. marxianus behaves similarly to its counterpart in S. cerevisiae. It suggested that the ammonia assimilation pathway might be different between K. marxianus and the genetic closed species K. lactis. In the present work, we analyzed the genetic similarity among the GDH gene family in K. marxianus and closed yeasts. Specific primers for GDH genes were designed based on the K. marxianus sequences deposited in the Génolevures Database. One of them, for the KmGDH2 gene, proved to be specific for K. marxianus DNA samples, which confirmed the molecular identification of environmental yeast isolates, and can be proposed for rapid screening of this yeast from environmental samples. The nucleotide sequence revealed that KmGDH2 belongs to the S. cerevisiae GDH1 gene family together with KlGDH gene.  相似文献   

2.
Summary Two strains of Kluyveromyces marxianus (A1 and A2) isolated from ‘aguamiel’ (agave sap) and one strain of K. lactis var. lactis (P7) isolated from ‘pulque’ (its fermented product), were studied to make a survey of inulinase production. The strains of K. marxianus A1 and A2 were the best producers of inulinase, giving up to 2.5 times more enzyme than the control hyperproducing strain K. marxianus CDBB-L-278, and showed lower catabolic repression than this. One strain isolated from pulque was identified as K. lactis var. lactis and was also an excellent inulinase producer, being the first strain of this species reported as such. These strains were very good inulinase producers and they had low susceptibility to catabolic repression probably because the source from which they were isolated was rich in sucrose and oligofructans. They can be used in the transformation of inulin to produce fructose and/or oligofructans.  相似文献   

3.
The lactic yeast Kluyveromyces marxianus var.marxianus (formerly K. fragilis) autolyzates at faster rate than Saccharomyces cerevisiae. During K. marxianus autolysis, quite similar release kinetics were observed for intracellular space markers (potassium ions, nucleotides), cell-wall components (polysaccharides, N-acetyl-D-Glucosamine) and non specific products (amino nitrogen). By Scanning Electronic Microscopy examination, no cell burst was observed, but a variation in cell shape (from ellipsoidal to cylindrical), as well as a 43% decrease in the internal volume were observed. The mechanism proposed for S. cerevisiae autolysis appeared also likely for K. marxianus.Abbreviations NacGlc N-acetyl-D-glucosamine - x total biomass (dry cellular weight) concentration  相似文献   

4.
Wild killer yeasts have been identified as inhibitory to strains used as starters in the production of alcoholic beverages such as beer and wine; therefore, killer or killer-resistant strains have been sought for use in alcoholic fermentations. In the current paper a total of 16 strains belonging to six species were isolated. From two samples of Agave sap (aguamiel) the following yeast strains were isolated: Candida lusitaneae (1), Kluyveromyces marxianus var. bulgaricus (2), and Saccharomyces cerevisiae (capensis) (1). Additionally, in seven samples of pulque (the fermented product), the species C. valida (six strains), S. cerevisiae (chevalieri) (4), S. cerevisiae (capensis) (1), and K. marxianus var. lactis (1) were found. The killer strains were C. valida and K. marxianus var. lactis from pulque and K. marxianus var. bulgaricus from aguamiel. One strain of S. cerevisiae (chevalieri) isolated from pulque which did not show killer activity was, on the other hand, resistant to other killer strains and it had a remarkable ethanol tolerance, suggesting that this strain could be used for alcohol production.  相似文献   

5.
Through preliminary plate tests,Kluyveromyces marxianus was found to be much more resistant to toxic heavy metals compared to aCUP1 R strain ofSaccharomyces cerevisiae. Specific growth rate and maximum dry weights affected by increasing metal concentrations were determined to obtain precise patterns of resistance. Metal biosorption was also monitored during the course of growth in synthetic media containing respective metals at 0.5 mM final concentration. Although Zn- and Co-binding was negligible, as much as 90% of silver, 60% of copper, and 65% of cadmium were found to be absorbed by the end of active growth. Analysis of the protein profiles ofS. cerevisiae andK. marxianus on metal exposure suggested constitutive production of metallothionein inK. marxianus. Furthermore, a smaller protein synthesized byK. marxianus on induction by silver or cadmium accounts for the high resistance of the organism to these metals.  相似文献   

6.
The sexual or teleomorphic state of yeasts has only been described in a few clinically involved species, mainly those of the Saccharomycetaceae family. With the aim of gathering information on their incidence in human pathology, a study has been made of a total of 2,135 strains isolated from clinical samples and cultivated in McClary agar. From these, 8 strains in teleomorphic state were identified: Kluyveromyces marxianus [1], Pichia anomala [2], Pichia farinosa [1], Pichia membranaefaciens [1] and Saccharomyces cerevisiae [3]. The two strains of P. anomala were responsible for fungemia; K. marxianus and the two strains of S. cerevisiae produced vaginitis; the other strains were oral cavity colonizers.  相似文献   

7.
Hybridization studies based on the prototrophic selection technique, involving the use of auxotrophic mutants of strains of all accepted species of the genus Kluyveromyces, are reported. Two main groups of mutually interfertile taxa were established within the genus. The first group comprises Kluyveromyces bulgaricus, K. cicerisporus, K. dobzhanskii, K. drosophilarum, K. fragilis, K. lactis; K. marxianus, K. phaseolosporus, K. vanudenii and K. wikenii. The second group consists of K. dobzhanskii, K. drosophilarum, K. lactis, K. vanudenii and K. wickerhamii. Hybrids were also detected in crosses involving K. drosophilarum and K. waltii as well as K. marxianus and K. thermotolerans.In terms of the concept of the biological species and in compliance with the requirements of the International Code of Botanical Nomenclature, taxa which hybridize with K. marxianus and form fertile recombinants at frequencies observed in intraspecific crosses, are accepted as varieties of K. marxianus.  相似文献   

8.
Deoxyribonucleic acids of 8 species ofKluyveromyces and one round-spored species ofPichia have been compared with P32 labelled DNA ofK. marxianus in view of a systematic study by a method of hybridization in liquid media.The species related toK. marxianus by currently employed systematic characters show generally a good nucleotide sequence homology (> 70%), exceptK. wickerhamii.On the contrary,K. africanus, K. phaffii andP. abadiae show a very low percentage of hybridization withK. marxianus.This molecular approach yields useful information to test the value of usual criteria of yeast systematic.

Collaboration technique: Mme Geneviéve Billon-Grand.  相似文献   

9.
Random genomic DNA fragments from Kluyveromyces marxianus were cloned in order to identify chromosomal bands in pulsed field electrophoresis patterns of intergeneric hybrid strains which were obtained by protoplast fusion. Molecular hybridization data indicated that the K. marxianus parental strain might be triploid, and it showed strong chromosome length polymorphism. We analyzed the karyotype of two Saccharomyces cerevisiae/K. marxianus hybrid strains (St. 1, St. 46) with our DNA probes and with a Ty1 specific probe. We found indications for recombinational events which lead to the formation of hybrid chromosomal DNA molecules.  相似文献   

10.
Kluyveromyces marxianus is thermotolerant yeast that is able to utilize a wider range of substrates and has greater thermal tolerance than most other yeast species. K. marxianus can assimilate xylose, but its ability to produce ethanol from xylose in oxygen-limited environments is poor. In the present study, the K. marxianus xylose reductase (KmXR) gene (Kmxyl1) was cloned and the recombinant enzyme was characterized to clarify the factors that limit xylose fermentation in K. marxianus NBRC1777. KmXR is a key enzyme in the xylose metabolism of K. marxianus, which was verified by disruption of the Kmxyl1 gene. The Km of the recombinant KmXR for NADPH is 65.67 μM and KmXR activity is 1.295 U/mg, which is lower than those of most reported yeast XRs, and the enzyme has no activity with coenzyme NADH. This result demonstrates that the XR from K. marxianus is highly coenzyme specific; combined with the extremely low XDH activity of K. marxianus with NADP+, the limitation of xylose fermentation is due to a redox imbalance under anaerobic conditions and low KmXR activity.  相似文献   

11.
【背景】马克斯克鲁维酵母(Kluyveromyces marxianus)具有完整的木糖代谢途径,可以高效利用木质纤维素中的木糖,因此对其糖转运蛋白基因的研究或可有效解决酵母木糖转运的相关问题。【目的】根据马克斯克鲁维酵母DMKU3-1042中KLMA_70145和KLMA_80101基因位点的功能预测,获得马克斯克鲁维酵母GX-UN120相应的糖转运蛋白基因序列并探究其功能。【方法】将转运蛋白基因分别克隆表达至酿酒酵母EBY.VW4000中考察重组菌株生长特性,以此间接评价对应转运蛋白的转运能力。【结果】Km_SUT2基因编码的糖转运蛋白可有效提高宿主细胞转运木糖、阿拉伯糖、山梨糖、核糖、乳糖和葡萄糖的能力,但却不能转运甘露糖、果糖、蔗糖和半乳糖。类似地,Km_SUT3基因编码的糖转运蛋白可提高细胞转运木糖、阿拉伯糖、山梨糖、半乳糖、核糖、乳糖和葡萄糖的能力,但却不能转运甘露糖和果糖。然而在葡萄糖存在的条件下,重组菌株对各种碳源的利用均受抑制,但Km_SUT3转运木糖和核糖过程中受葡萄糖的抑制作用较小。【结论】马克斯克鲁维酵母GX-UN120中转运蛋白Km_SUT2和Km_SUT3可...  相似文献   

12.
Kluyveromyces marxianus NRRL Y-1196 produced the highest inulinase activity (38 U/mg protein) of six yeasts examined after 24 h growth in sauerkraut brine in shaking flasks at 30°C with 0.3% inulin as an enzyme inducer. The enzyme was recovered by acetone fractionation, with a yield of 81%. It had maximum activity at pH 4.4 and 55°C with K m values for inulin and sucrose of 3.92 mm and 11.9 mm, respectively. The yeast raised the pH from 3.4 to above 7.0, using all the lactic acid in the brine. Growth of K. marxianus in sauerkraut brine with a small amount of inulin may usefully decrease the BOD and concomitantly produce inulinase.The authors are with the Department of Food Science and Technology, Cornell University, Geneva, New York 14456, USA  相似文献   

13.
Kluyveromyces marxianus is homothallic hemiascomycete yeast frequently isolated from dairy environments. It possesses phenotypic traits such as enhanced thermotolerance, inulinase production, and rapid growth rate that distinguish it from its closest relative Kluyveromyces lactis. Certain of these traits, notably fermentation of lactose and inulin to ethanol, make this yeast attractive for industrial production of ethanol from inexpensive substrates. There is relatively little known, however, about the diversity in this species, at the genetic, metabolic or physiological levels. This study compared phenotypic traits of 13 K. marxianus strains sourced from two European Culture Collections. A wide variety of responses to thermo, osmotic, and cell wall stress were observed, with some strains showing multi-stress resistance. These traits generally appeared unlinked indicating that, as with other yeasts, multiple resistance/adaptation pathways are present in K. marxianus. The data indicate that it should be possible to identify the molecular basis of traits to facilitate selection or engineering of strains adapted for industrial environments. The loci responsible for mating were also identified by genome sequencing and PCR analysis. It was found that K. marxianus can exist as stable haploid or diploid cells, opening up additional prospects for future strain engineering.  相似文献   

14.
15.
Mannoprotein with emulsification properties was extracted from the cell walls of Kluyveromyces marxianus grown on a lactose-based medium by autoclaving cells in a citrate buffer at pH 7.The purified product was evaluated for chemical and physical stability to establish its potential use as a natural emulsifier in processed foods. The yield of purified bioemulsifier from this strain of K. marxianus was 4–7% of the original dry cell weight. The purified product, at a concentration of 12 g l–1, formed emulsions that were stable for 3 months when subjected to a range of pH (3–11) and NaCl concentrations (2–50 g l–1). The composition of this mannoprotein was 90% carbohydrate (mannan) and 4–6% protein. These values are similar to mannoprotein extracted from cells of Saccharomyces cerevisiae, which is the traditional source. Consequently K. marxianus cultivated on a low-cost lactose-based medium such as whey, a lactose-rich clean waste of the dairy industry, could be developed as a source of bioemulsifier for use in the food industry.  相似文献   

16.
Summary Amino acid analyses were undertaken on single cell protein (SCP) produced by thermotolerant strains ofKluyveromyces marxianus var.marxianus grown on sugar cane molasses at 40°C. The maximum conversion of available sugars to biomass at 45°C was only 10.8% (g dry wt.·g–1 total sugars). The amino acid composition of the SCP did not differ markedly from that reported for other yeast species.  相似文献   

17.
The aim of this work was to obtain insights about the factors that determine the lactose fermentative metabolism of Kluyveromyces marxianus UFV-3. K. marxianus UFV-3 and Kluyveromyces lactis JA6 were cultured in a minimal medium containing different lactose concentrations (ranging from 0.25 to 64 mmol l−1) under aerobic and hypoxic conditions to evaluate their growth kinetics, gene expression and enzymatic activity. The increase in lactose concentration and the decrease in oxygen level favoured ethanol yield for both yeasts but in K. marxianus UFV-3 the effect was more pronounced. Under hypoxic conditions, the activities of β-galactosidase and pyruvate decarboxylase from K. marxianus UFV-3 were significantly higher than those in K. lactis JA6. The expression of the LAC4 (β-galactosidase), RAG6 (pyruvate decarboxylase), GAL7 (galactose-1-phosphate uridylyltransferase) and GAL10 (epimerase) genes in K. marxianus UFV-3 was higher under hypoxic conditions than under aerobic conditions. The high expression of genes of the Leloir pathway, LAC4 and RAG6, associated with the high activity of β-galactosidase and pyruvate decarboxylase contribute to the high fermentative flux in K. marxianus UFV-3. These data on the fermentative metabolism of K. marxianus UFV-3 will be useful for optimising the conversion of cheese whey lactose to ethanol.  相似文献   

18.
Efficient plasmid transformation of Kluyveromyces marxianus cells of 1.9 × 103 transformant μg−1 DNA with an episomal plasmid was achieved by the use of a simple lithium acetate method with the addition of 10 mM DTT and an increased heat shock temperature of 47 °C. This method is shown to be also efficient for replicative plasmids. Therefore, we suggest its use as a routine method to transform K. marxianus cells. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Superoxide dismutase (SOD) activity is one major defense line against oxidative stress for all of the aerobic organisms, and industrial production of this enzyme is highly demanded. The Cu/Zn superoxide dismutase gene (KmSOD1) of Kluyveromyces marxianus L3 was cloned and characterized. The deduced KmSod1p protein shares 86% and 71% of identity with Kluyveromyces lactis and Saccharomyces cerevisiae Sod1p, respectively. The characteristic motifs and the amino acid residues involved in coordinating copper and zinc and in enzymatic function were conserved. To the aim of developing a microbial production of Cu/Zn superoxide dismutase, we engineered the K. marxianus L3 strain with the multicopy plasmid YG-KmSOD1 harboring the KmSOD1 gene. The production of KmSOD1p in K. marxianus L3 and K. marxianus L3 (pYG-KmSOD1) in response to different compositions of the culture medium was evaluated. The highest specific activity (472 USOD mgprot −1) and the highest volumetric yield (8.8 × 105 USOD l−1) were obtained by the recombinant strain overexpressing KmSOD1 in the presence of Cu2+ and Zn2+ supplements to the culture media. The best performing culture conditions were positively applied to a laboratory scale fed-batch process reaching a volumetric yield of 1.4 × 106 USOD l−1. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
In the present work, a thermophilic esterase from Thermus thermophilus HB27 was cloned into Kluyveromyces marxianus and into Kluyveromyces lactis using two different expression systems, yielding four recombinant strains. K. lactis showed the highest esterase expression levels (294 units per gram dry cell weight, with 65% of cell-bound enzyme) using an episomal system with the PGK promoter and terminator from Saccharomyces cerevisiae combined with the K. lactis k1 secretion signal. K. marxianus showed higher secretion efficiency of the heterologous esterase (56.9 units per gram dry cell weight, with 34% of cell-bound enzyme) than K. lactis. Hydrolytic activities for the heterologous esterases were maximum at pH values between 8.0 and 9.0 for both yeast species and at temperatures of 50 °C and 45 °C for K. marxianus and K. lactis, respectively. When compared to previously published data on this same esterase produced in the original host or in S. cerevisiae, our results indicate that Kluyveromyces yeasts can be considered good hosts for the heterologous secretion of thermophilic esterases, which have a potential application in biodiesel production or in resolving racemates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号