首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Germ cells of various animals contain a determinant that is called the germ plasm. In amphibians such as Xenopus laevis, the germ plasm is composed of mitochondria and electron dense germinal granules that are embedded in a fibrillar matrix. Previous reports indicated that one of the components of germinal granules was mitochondrial large and small ribosomal RNA (mtlrRNA and mtsrRNA). Utilizing a modified procedure for electron microscopy in situ hybridization, we investigated the distribution of these RNAs along with other components of the germ plasm in Xenopus laevis embryos. We found, that contrary to previous reports, the mtlrRNA and mtsrRNA were located in close vicinity to the germinal granules but were not major constituents of granules. The majority of the mtlrRNA and mtlsrRNAs was present inside the mitochondria and in the germ plasm matrix.  相似文献   

2.
In Drosophila, formation of the germline progenitors, the pole cells, is induced by polar plasm localized in the posterior pole region of early embryos. The polar plasm contains polar granules, which act as a repository for the factors required for pole cell formation. It has been postulated that the factors are stored as mRNA and are later translated on polysomes attached to the surface of polar granules. Here, the identification of mitochondrial small ribosomal RNA (mtsrRNA) as a new component of polar granules is described. The mtsrRNA was enriched in the polar plasm of the embryos immediately after oviposition and remained in the polar plasm throughout the cleavage stage until pole cell formation. In situ hybridization at an ultrastructural level revealed that mtsrRNA was enriched on the surface of polar granules in cleavage embryos. Furthermore, the localization of mtsrRNA in the polar plasm depended on the normal function of oskar, vasa and tudor genes, which are all required for pole cell formation. The temporal and spatial distribution of mtsrRNA is essentially identical to that of mitochondrial large ribosomal RNA (mtlrRNA), which has been shown to be required for pole cell formation. Taken together, it is speculated that mtsrRNA and mtlrRNA are part of the translation machinery localized to polar granules, which is essential for pole cell formation.  相似文献   

3.
Mitochondrial large ribosomal RNA (mtlrRNA) has been identified as a cytoplasmic factor inducing pole cells in ultraviolet (UV)-sterilized Drosophila embryos. In situ hybridization studies have revealed that mtlrRNA is present outside mitochondria localized on the surface of polar granules during the cleavage stage. In the present study, we describe the developmental changes in extramitochondrial mtlrRNA distribution through early embryogenesis using in situ hybridization at the light and electron microscopic level. No mtlrRNA signal was discernible on polar granules in the mature oocyte, unless the oocyte was activated for development. mtlrRNA was localized on the surface of polar granules during a limited period of stages from oocyte activation to pole bud formation and disappeared as soon as being detached from polar granules without entering pole cells. These changes in the temporal and spatial distribution of mtlrRNA outside mitochondria are compatible with the idea that mtlrRNA is required for pole cell formation but not for the differentiation of pole cells as functional germ cells.  相似文献   

4.
Mitochondrial large ribosomal RNA (mtlrRNA) is transferred out of mitochondria and associates with germinal granules in Drosophila and Xenopus embryos. It has been revealed that mtlrRNA outside of mitochondria is required for formation of the germ-line progenitor, or pole cells in Drosophila. In the present study, the distribution of mtlrRNA was examined in embryos of the ascidian, Halocynthia roretzi, during cleavage stages by whole-mount in situ hybridization. Until the 4-cell stage, the distribution of mtlrRNA coincided with that of mitochondria. which are localized to the cortical cytoplasm in the posterior region of the embryos. Both mitochondria and mtlrRNA were preferentially partitioned into muscle-lineage blastomeres during cleavage stages. After the 8-cell stage, a discrepancy in intracellular localization of mitochondria and mtlrRNA became evident. Mitochondria translocated into central yolkless cytoplasm, while mtlrRNA remained in the posterior cortex in the posterior muscle-lineage b astomeres. The significance of the cortical localization of mtlrRNA in muscle precursor cells in ascidian embryos is obscure. However, the results suggest that mtlrRNA is also transferred out of mitochondria in early ascidian embryos and may play some roles in developmental processes.  相似文献   

5.
Two maternal-effect grandchildless (gs) mutations of Drosophila melanogaster, gs(1)N26 and gs(1)N441, cause delay in nuclear arrival at the polar plasm. In mutant embryos, polar plasm loses its ability to induce pole cells during retarded nuclear migration to the posterior pole of embryos. In the present study, it was shown that in N26 and N441 embryos, mitochondrial large rRNA (mtlrRNA), an essential factor for pole cell formation, is delocalized during the delay in nuclear arrival. This suggests that the loss of mtlrRNA causes failure of the mutants to form pole cells. Furthermore, it was shown that all of the other polar plasm components examined, namely Vasa protein, Germ cell-less protein, nanos mRNA and Polar granule component RNA start to be delocalized during the delay in nuclear arrival. This suggests that polar plasm integrity is not maintained in mutant embryos. It was finally shown that Vas is also delocalized in embryos that are inhibited to form pole cells by reducing the amount of mtlrRNA. This indicates that the segregation of polar plasm into pole cells is required to maintain polar plasm integrity. The mechanism regulating polar plasm integrity in embryos is discussed.  相似文献   

6.
The germ plasm is a specialized region of oocyte cytoplasm that contains determinants of germ cell fate. In Xenopus oocytes, the germ plasm is a part of the METRO region of mitochondrial cloud. It contains the germinal granules and a variety of coding and noncoding RNAs that include Xcat2, Xlsirts, Xdazl, DEADSouth, Xpat, Xwnt11, fatVg, B7/Fingers, C10/XFACS, and mitochondrial large and small rRNA. We analyzed the distribution of these 11 different RNAs within the various compartments of germ plasm during Xenopus oogenesis and development by using whole-mount electron microscopy in situ hybridization. Serial EM sections were used to reconstruct a three-dimensional image of germinal granule distribution within the METRO region of the cloud and the distribution of RNAs on the granules in oocytes and embryos. We found that, in the oocytes, the majority of RNAs were associated either with the precursor of germinal granules or with the germ plasm matrix. Only Xcat2, Xpat, and DEADSouth RNAs were associated with the mature germinal granules in oocytes, while only Xcat2 and Xpat were associated with germinal granules in embryos. However, Xcat2 was the only RNA that was consistently sequestered inside the germinal granules, while the others were located on the periphery. Xdazl, which functions in germ cell migration/formation, was detected on the matrix between granules. Later in development, Xcat2 mRNA was released from the germinal granules. This coincides with the timing of its translational derepression. These results demonstrate that there is a dynamic three-dimensional architecture to the germinal granules that changes during oogenesis and development. They also indicate that association of specific RNAs with the germinal granules is not a prerequisite for their serving a germ cell function; however, it may be related to their state of translational repression.  相似文献   

7.
We have examined the distribution of RNA processing factors in the germinal vesicle (GV) of the common frog Rana temporaria during early vitellogenesis by immunostaining on light- and electronmicroscopic levels and by in situ nucleic acid hybridization. Small nuclear RNPs (snRNP) and factor SC35 involved in pre-mRNA splicing occur in lampbrush chromosome loops and numerous granules 1-3 microns in size. These granules are identical to B snurposomes of Xenopus laevis and Notophtalmus viridescens described earlier (Wu et al., 1991). Some of B snurposomes are attached to homologous loops of lampbrush chromosomes. Immunofluorescent study of Cajal bodies/coiled bodies (CB) showed that sometimes CB have B snurposomes attached to their surface. In this case splicing factor SC35 is found in B snurposomes and B-like inclusions in CB matrix. In CB without attached B snurposomes splicing factor SC35 localizes throughout the whole organelle. Staining of GV spreads with antibodies against nucleolar protein NO38 revealed this protein in CB, nucleoli and micronucleoli. Using in situ nucleic acid hybridization and immunofluorescent staining we have found that on GV spreads from hibernating frogs B snurposomes contact nucleoli. Nucleoli contain snRNP. These data suggest that nucleoli may be storage sites of snRNPs during natural inactivation of RNA synthesis. During winter season in Rana temporaria GV nucleoli become compacted and a number of micronucleoli (less than 2 microns) dramatically increases. Analysis of micronucleoli showed that they contain rRNA, protein NO38, trace amount of U3 small nucleolar RNA and do not contain fibrillarin, involved as U3 in pre-rRNA processing. We suggest that decrease of rRNA synthesis during frog hibernation results in transformation of part of nucleoli in micronucleoli.  相似文献   

8.
In the present paper we have investigated the origin of the spherical bodies (SBs) present within the germinal vesicle of about 400 microm previtellogenic oocytes in the lizard Podarcis sicula. In particular, we have attempted to clarify whether they derive from the single, large nucleolus present in early diplotenic oocyte as a consequence of ribosomal gene inactivation. We have, therefore, experimentally induced a decrease in rRNA synthesis by injecting animals with D-galactosamine or by exposing them to low temperatures. The investigations carried out have demonstrated that both treatments induce significant ultrastructural changes in the nucleolar apparatus and in particular fragmentation and the formation of SBs comparable to those observed in germinal vesicle under physiological conditions. These results indicate that the germinal vesicle of Podarcis sicula has a nucleolar apparatus that significantly changes its aspect according to its functional status and reveal that in this species, the time course of rRNA synthesis is peculiar with respect to any other vertebrate oocyte studies so far.  相似文献   

9.
10.
The germ cell lineage is specified by the germ plasm, which in Xenopus laevis contains putative determinants called germinal granules. The pathway through which these structures form and how their components are assembled remain unclear. Using a combination of electron microscopy and in situ hybridization with the germinal granule-associated Xcat2 mRNA we demonstrated that the granules were derived from a branching network of granulofibrillar material within the mitochondrial cloud. Targeting of Xcat2 mRNA to the germinal granules depended on a 164-nt 3'UTR germinal granule localization element (GGLE; nt 631-795) that was distinct from the previously defined mitochondrial cloud localization element (MCLE; nt 403-630; Y. Zhou and M. L. King, 1996, Development 122, 2947-2953). This demonstrated that the Xcat 3'UTR contains a compound localization element consisting of a general element (MCLE) targeting the RNA to the mitochondrial cloud and a second element (GGLE) responsible for targeting to the germinal granules within the cloud. The GGLE when fused to Xlsirt RNA was sufficient to target this nongranule mitochondrial cloud-associated RNA to the germinal granules. This is the first example of a localization element involved in targeting an mRNA to a specific subcellular target such as the germinal granules and suggests that cis-acting elements on RNAs play an important role in the assembly of germinal granules and, therefore, the establishment of the germ cell lineage.  相似文献   

11.
P granules are cytoplasmic structures of unknown function that are associated with germ nuclei in the C. elegans gonad, and are localized exclusively to germ cells, or germ cell precursors, throughout the life cycle. All the known protein components of P granules contain putative RNA-binding motifs, suggesting that RNA is involved in either the structure or function of the granules. However, no specific mRNAs have been identified within P granules in the gonad. We show here that P granules normally contain a low level of RNA, and describe conditions that increase this level. We present evidence that several, diverse mRNAs, including pos-1, mex-1, par-3, skn-1, nos-2 and gld-1 mRNA, are present at least transiently within P granules. In contrast, actin and tubulin mRNA and rRNA are either not present in P granules, or are present at relatively low levels. We show that pgl-1 and the glh (Vasa-related) gene family, which encode protein components of P granules, do not appear essential for RNA to concentrate in P granules; these proteins may instead function in events that are a prerequisite for RNAs to be transported efficiently from the nuclear surface.  相似文献   

12.
During Xenopus oogenesis, the message transport organizer (METRO) pathway delivers germinal granules and localized RNAs to the vegetal cortex of the oocyte via the mitochondrial cloud (Balbiani body). According to the traditional model, the mitochondrial cloud is thought to break up at the onset of vitellogenesis and the germinal granules and METRO-localized RNAs are transported within the mitochondrial cloud fragments to the vegetal cortex of the oocyte. We used light and electron microscopy in situ hybridization and three-dimensional reconstruction to show that germinal granules and METRO-localized RNAs are delivered to the oocyte cortex before the onset of mitochondrial cloud fragmentation and that the delivery involves accumulation of localized RNAs and aggregation of germinal granules at the vegetal tip of the mitochondrial cloud and subsequent internal expansion of the mitochondrial cloud between its animal (nuclear) and vegetal tips, which drives the germinal granules and METRO-localized RNAs toward the vegetal cortex. Thus the fragmentation of the cloud that occurs later in oogenesis is irrelevant to the movement of METRO-localized RNAs and germinal granules. On the basis of these findings, we propose here a revised model of germinal granule and localized RNAs delivery to the oocyte vegetal cortex via the METRO pathway.  相似文献   

13.
Cortical granules exocytose after the fusion of egg and sperm in most animals, and their contents function in the block to polyspermy by creating an impenetrable extracellular matrix. Cortical granules are synthesized throughout oogenesis and translocate en masse to the cell surface during meiosis where they remain until fertilization. As the mature oocyte is approximately 125 micro m in diameter (Lytechinus variegatus), many of the cortical granules translocate upwards of 60 micro m to reach the cortex within a 4 hour time window. We have investigated the mechanism of this coordinated vesicular translocation event. Although the stimulus to reinitiate meiosis in sea urchin oocytes is not known, we found many different ways to reversibly inhibit germinal vesicle breakdown, and used these findings to discover that meiotic maturation and cortical granule translocation are inseparable. We also learned that cortical granule translocation requires association with microfilaments but not microtubules. It is clear from endocytosis assays that microfilament motors are functional prior to meiosis, even though cortical granules do not use them. However, just after GVBD, cortical granules attach to microfilaments and translocate to the cell surface. This latter conclusion is based on organelle stratification within the oocyte followed by positional quantitation of the cortical granules. We conclude from these studies that maturation promoting factor (MPF) activation stimulates vesicle association with microfilaments, and is a key regulatory step in the coordinated translocation of cortical granules to the egg cortex.  相似文献   

14.
To detect structural changes following UV irradiation in the “germinal plasm,” ultrastructure of the “germinal plasm” was studied in normal and UV-irradiated eggs of Xenopus laevis at the following stages: prior to fertilization, early 2-cell, 32-cell, and late blastula. It was revealed that ultrastructural features of the “germinal plasm” were essentially common between Xenopus laevis and Rana pipiens. That is, the “germinal plasm” is composed primarily of a large aggregation of mitochondria and distinctive electron dense bodies (germinal granules). Irregularly shaped cylinderlike granules (giant germinal granules), having the same internal characteristics as the germinal granules, were found in the “germinal plasm” of all eggs examined.Comparison between normal and UV-irradiated eggs has demonstrated that UV irradiation causes swelling and vacuolation of mitochondria and fragmentation of germinal granules. The suggestion is that the integrity of certain UV-sensitive factor(s), which is involved in maintaining normal structure of germinal granules, is indispensable for the determination of the primordial germ cells.  相似文献   

15.
When immature oocytes of the starfish, Asterina pectinifera , were treated with calcium-free seawater for 1 hr and then inseminated in normal seawater, they formed several blisters, indicative of polyspermy, and raised fertilization membranes. These oocytes continued to have intact germinal vesicles. Electron microscopic study revealed that the egg surface remained virtually unchanged after the treatment with calcium-free seawater. Upon insemination, however, the cortical granules broke down and the fertilization membrane was formed. These immature oocytes with ferilization membranes underwent maturation (germinal vesicle breakdown) after treatment with 1-methyladenine.
The treatment with calcium-free seawater seems to bring about some physiological change on the surface of immature oocyte, which bestows some attributes of maturation but is insufficient to mature the oocytes completely.  相似文献   

16.
ULTRASTRUCTURE OF THE 'GERMINAL PLASM' IN XENOPUS EMBRYOS AFTER CLEAVAGE   总被引:8,自引:8,他引:0  
The endodermal location of 'germinal plasm'-bearing cells (GPBCs) and the ultrastructure of the 'germinal plasm' were studied in Xenopus laevis embryos at gastrula, neurula, tailbud and younger tadpole stages. Primordial germ cells (PGCs) of feeding tadpoles were also observed ultrastructurally.
GPBCs were found in the inner endoderm and in the yolk plug region at the late gastrula stage, in the middle and in the dorsal part of the endoderm cell mass at the late neurula and late tailbud stages, respectively. At the younger tadpole stage they were observed in the uppermost dorsal part of the endoderm. Germinal granules were always present in GPBCs at all stages examined but were not found in PGCs of feeding tadpoles. Irregularly shaped-stringlike bodies (ISBs) which seemed to have changed from germinal granules were first noticed in GPBCs at the late neurula stage, and were still present in PGCs of tadpoles, while 'granular materials' were not seen in GPBCs until the feeding tadpole stages. These facts and ultrastructural similarities shared by these organelles lead us to conclude that the change of the germinal granule through ISB, to the 'granular material' takes place during the differentiation of GPBCs into PGCs.  相似文献   

17.
18.
In order to investigate whether a vasa -like protein is present in germ line cells of Xenopus , antibodies were produced which react specifically with synthetic oligopeptides of sequences from near the N- or C-termini or with one including the DEAD box of the Drosophila vasa protein.
Only the antibody against the oligopeptide including the DEAD box reacted strongly with germ plasm (GP) or with cytoplasm of germ line cells of Xenopus embryos by immunofluorescence microscopy. By immunoelectron microscopy, the antibody was demonstrated to react with the GP-specific structure, germinal granules, in cleaving embryos, and with their derivatives in the germ line cells of embryos at stages extending from gastrula to feeding tadpole. It also reacted with mitochondria not only in the GP and the germ line cells but also in somatic cells, and with myofibrils in muscle cells. By Western blotting, the antibody was shown to react with several bands of Mr 42–69 ± 103 in protein samples from Xenopus embryos. In samples from Drosophila ovaries, it reacted with a Mr 71 ± 103 band which was probably the vasa protein. This indicates the possibility that Xenopus embryos contain several DEAD family proteins. One of these is present on germinal granules, resembling the vasa protein on polar granules of Drosophila .  相似文献   

19.
The relationship of ribosomal RNA (rRNA) synthesis to nucleolar ultrastructure was studied in partial nucleolar mutants of Xenopus laevis. These mutations are the result of a partial deletion of rRNA genes and therefore alow studies on nucleolar structure and function without using drugs that inhibit rRNA synthesis. Ultrastructural studies demonstrated that normal embryos have reticulated nucleoli that are composed of a loose meshwork of granules and fibrils and a typical nucleolonema. In contrast, partial nucleolar mutants in which rRNA synthesis is reduced to less than 50% of the normal rate have compact nucleoli and nucleolus-like bodies. The compace nucleoli contain granules and fibrils, but they are segregated into distinct regions, and a nucleolonema is never seen. Since other species of RNA are synthesized normally by partial nucleolar mutants, these results demonstrate that nucleolar segragation is related specifically to a reduction in rRNA synthesis. The nucleolus-like bodies are composed mainly of fibrils,and the number of such bodies are composed mainly of fibrils, and the number of such bodies present in the different nucleolar mutants is inversely related to the relative rate of rRNA synthesis. Although the partial nucleolar organizers produce segregated nucleoli in these mutants, they organize morphologically normal, but smaller, nucleoli in heterozygous embryos. Alternative explanations to account for these results are discussed.  相似文献   

20.
The immunolocalization of An3 protein, an ATP-dependent RNA helicase and a member of the DEAD box family, was compared with the localization of fibrillarin, a protein essential for rRNA processing, and snRNPs, which are involved in mRNA splicing reactions, during oogenesis and embryogenesis in Xenopus laevis. Although An3 protein was detected in the cytoplasm of all stages of oocytes, in most stages An3 protein was also present in the nucleus. Prior to stage I An3 protein was uniformly dispersed throughout the entire germinal vesicle; from stages I to V it was in nucleoli. By stage VI nucleolar labeling with anti An3 disappeared and the protein was no longer present within nuclei. An3 reactivity was also present throughout the nuclei of follicle cells surrounding prestage I to stage VI oocytes. Both cytoplasmic and nuclear An3 staining were present in cells of stages 8 to 35 embryos; however, nuclear staining was punctate and uniformly distributed throughout the nucleoplasm. Fibrillarin was diffusely distributed throughout the entire germinal vesicle prior to stage I, localized exclusively to nucleoli of oocytes between stages I and VI and in nucleoli of stages 12 and 35 embryonic cells. Reactivity for snRNPs (anti-Sm) in germinal vesicles of prestage I oocytes was diffuse, and similar to the distribution of An3 and fibrillarin; in later stage oocytes anti-Sm staining was restricted to a population of granules, much fewer in number and more heterogeneous in size than nucleoli. Anti-Sm activity was apparent in nuclei of embryonic cells of stages 8 to 35 embryos. Although colocalization of the Sm epitope and An3 was not observed in developing oocytes and in embryonic cells, Sm reactive material was frequently found in close association with An3-positive nucleoli (oocytes) and nuclear deposits (embryonic cells). In stage IV and V oocytes treated with actinomycin D (4 μg/ml) to inhibit rRNA synthesis, nucleoli, which continued to possess fibrillarin, lacked An3; staining of follicle cell nuclei for An3 was unchanged. Treatment with 200 μg/ml actinomycin D to block mRNA synthesis, inhibited An3 but not fibrillarin staining in nuclei of prestage I oocytes and follicle cells. The changing patterns of An3 reactivity and the differential effects of actinomycin D on such localizations observed here are consistent with a role for An3 in the processing/production of RNA. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号