首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrical stun devices (ESDs) serve a basic role in law enforcement and provide an alternative to lethal options for target control by causing electromuscular incapacitation (EMI). A fundamental concern is the adverse health consequences associated with their use. The capability of EMI electric field pulses to disrupt skeletal muscle cells (i.e. rhabdomyolysis) was investigated over the operational range commonly used in commercial EMI devices. Functional and structural alteration and recovery of muscle and nerve tissue were assessed. In an anesthetized swine model, the left thigh was exposed to 2 min of electrical pulses, using a commercially available ESD or a custom-made EMI signal power amplifier. Serum creatinine phosphokinase (CPK), troponin, aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) levels were monitored intermittently for 6 h post-EMI exposure. A standard external cardiac defibrillator served as a positive control. Muscle and nerve tissue histology adjacent to the EMI contacts were examined. Post-EMI shock skeletal muscle function was evaluated by analyzing the compound muscle action potentials (CMAPs) of the rectus femoris muscle. Maximal energy cardiac defibrillator pulses resulted in rhabdomyolysis and marked elevation of CPK, LDH, and AST 6 h post-shock. EMI field pulses resulted in the animals developing transient acidosis. CMAP amplitudes decreased approximately 50% after EMI and recovered to near-normal levels within 6 h. Within 6 h post-EMI exposure, blood CPK was mildly increased, LDH was normal, and no arrhythmia was observed. Minimal rhabdomyolysis was produced by the EMI pulses. These results suggest that EMI exposure is unlikely to cause extremity rhabdomyolysis in normal individuals. Bioelectromagnetics. © 2020 Bioelectromagnetics Society  相似文献   

2.
3.
Rhabdomyolysis due to pulsed electric fields   总被引:5,自引:0,他引:5  
High-voltage electrical trauma frequently results in extensive and scattered destruction of skeletal muscle along the current path. The damage is commonly believed to be mediated by heating. Recent experimental and theoretical evidence suggests, however, that the rhabdomyolysis and secondary myoglobin release that occur also can result from electroporation, a purely nonthermal mechanism. Based on the results of a computer simulation of a typical high-voltage electric shock, we have postulated that electroporation contributes substantially to skeletal muscle damage and could be the primary mechanism of damage in some cases of electrical injury. In this study, we determined the threshold field strength and exposure duration required to produce rhabdomyolysis by the electroporation mechanism. The change in the electrical impedance of intact skeletal muscle tissue following the application of short-duration, high-intensity electric field pulses is used as an indicator of membrane damage. Our experiments show that a decrease in impedance magnitude occurs following electric field pulses that exceed threshold values of 60 V/cm magnitude and 1-ms duration. The field strength, pulse duration, and number of pulses are factors that determine the extent of damage. The effect does not depend on excitation-contraction coupling. Electron micrographs confirm structural defects created in the membranes by the applied electric field pulses, and these represent the first clear demonstration of rhabdomyolysis in intact muscle due to electroporation. These results provide compelling evidence in support of our postulate.  相似文献   

4.
Summary Morphologic changes in a rat skeletal muscle cell line (L6) exposed for 1 h to the parenteral antibiotics amphotericin B (AMP), tetracycline-HCl (TET), erythromycin lactobionate (ERY), and cephaloridine (CEP) were characterized by transmission and scanning electron microscopy and compared to cellular release of creatine phosphokinase (CRK). AMP (0.05, 0.1, 0.5 mg/ml) caused a concentration-related swelling of nuclei, endoplasmic reticulum, and mitochondria. Loss of membrane integrity associated with AMP exposure was evident at the middle concentration and extensive at the high concentration, which correlated well with the 43 and 90% depletion of CPK from the muscle cells, respectively. TET (0.25, 1.0, 2.5 mg/ml) caused dilation of endoplasmic reticulum and cytoplasmic blebbing at the low concentration but had no effect on the cytoplasmic membrane or CPK. Cells exposed to the high concentration of TET had extensive damage to the cytoplasmic membrane, and CPK was completely depleted. ERY (2.5, 5.0, 25 mg/ml) caused a pattern of morphologic changes and CPK depletion similar to TET. CEP (4.0, 20, 50 mg/ml) had no effect on membrane integrity or CPK; however, membranous whorls were prominent in the cytoplasm. A good correlation between CPK release and cytoplasmic membrane integrity was evident and the ability of these agents to release CPK from muscle cells in culture correlated with the known irritancy potential of these parenteral antibiotics. Furthermore, CPK depletion seems to be a reliable indicator of muscle cell damage after cytoplasmic membrane perturbation and is therefore an appropriate index of toxicity in this in vitro muscle irritation model.  相似文献   

5.
Microsurgical procedures such as free tissue transfer or replantations of amputated digits involve an obligatory ischemic period leading to regional tissue oedema, rhabdomyolysis, systemic acidosis, hypercalcemia and multiple organ dysfunction syndrome reflecting ischemia-reperfusion (I/R) injury. Since nitroxide stable radicals act as antioxidants their potential protective effects were tested. Anaesthetized Sabra rats were subjected to regional ischemia of the hind limb for 2 h using a tourniquet. Upon reperfusion rats were injected with 4-OH-2,2,6,6-tetramethylpiperidine-1-oxyl (TPL). Systemic I/R-induced damage was assessed by sampling blood for differential count, lactate dehydrogenase (LDH) and creatine phosphokinase (CPK) serum levels. Regional injury was evaluated by analysing excised muscle samples for oedema (tissue water content) and inflammatory infiltrate (number of cell nuclei in histomorphometric analysis). I/R-induced changes of biomarkers reflecting systemic damage peaked about 8 h following the start of reperfusion and fully disappeared as the biomarkers relaxed to their pre-ischemic values after 24 h. TPL facilitated the recovery of some of these parameters and partially affected release of cellular CPK and LDH. The parameters of I/R-induced regional tissue injury did not demonstrate any recovery and were not inhibited by TPL.  相似文献   

6.
Outside their cellular environments, hemoglobin (Hb) and myoglobin (Mb) are known to wreak oxidative damage. Using haptoglobin (Hp) and hemopexin (Hx) the body defends itself against cell-free Hb, yet mechanisms of protection against oxidative harm from Mb are unclear. Mb may be implicated in oxidative damage both within the myocyte and in circulation following rhabdomyolysis. Data from the literature correlate rhabdomyolysis with the induction of Heme Oxygenase-1 (HO-1), suggesting that either the enzyme or its reaction products are involved in oxidative protection. We hypothesized that carbon monoxide (CO), a product, might attenuate Mb damage, especially since CO is a specific ligand for heme iron. Low density lipoprotein (LDL) was chosen as a substrate in circulation and myosin (My) as a myocyte component. Using oxidation targets, LDL and My, the study compared the antioxidant potential of CO in Mb-mediated oxidation with the antioxidant potential of Hp in Hb-mediated oxidation. The main cause of LDL oxidation by Hb was found to be hemin which readily transfers from Hb to LDL. Hp prevented heme transfer by sequestering hemin within the Hp-Hb complex. Hemin barely transferred from Mb to LDL, and oxidation appeared to stem from heme iron redox in the intact Mb. My underwent oxidative crosslinking by Mb both in air and under N2. These reactions were fully arrested by CO. The data are interpreted to suit several circumstances, some physiological, such as high muscle activity, and some pathological, such as rhabdomyolysis, ischemia/reperfusion and skeletal muscle disuse atrophy. It appear that CO from HO-1 attenuates damage by temporarily binding to deoxy-Mb, until free oxygen exchanges with CO to restore the equilibrium.  相似文献   

7.
Microsurgical procedures such as free tissue transfer or replantations of amputated digits involve an obligatory ischemic period leading to regional tissue oedema, rhabdomyolysis, systemic acidosis, hypercalcemia and multiple organ dysfunction syndrome reflecting ischemia-reperfusion (I/R) injury. Since nitroxide stable radicals act as antioxidants their potential protective effects were tested. Anaesthetized Sabra rats were subjected to regional ischemia of the hind limb for 2 h using a tourniquet. Upon reperfusion rats were injected with 4-OH-2,2,6,6-tetramethylpiperidine-1-oxyl (TPL). Systemic I/R-induced damage was assessed by sampling blood for differential count, lactate dehydrogenase (LDH) and creatine phosphokinase (CPK) serum levels. Regional injury was evaluated by analysing excised muscle samples for oedema (tissue water content) and inflammatory infiltrate (number of cell nuclei in histomorphometric analysis). I/R-induced changes of biomarkers reflecting systemic damage peaked about 8 h following the start of reperfusion and fully disappeared as the biomarkers relaxed to their pre-ischemic values after 24 h. TPL facilitated the recovery of some of these parameters and partially affected release of cellular CPK and LDH. The parameters of I/R-induced regional tissue injury did not demonstrate any recovery and were not inhibited by TPL.  相似文献   

8.
Activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), creatine phosphokinase (CPK), and lactate dehydrogenase (LDH) were determined in plasma, kidney, liver, and muscle from five species of captive birds. Few differences occurred in plasma activities between sexes but considerable differences occurred between species. All five enzymes were detected in each of the tissues sampled. Relative enzyme activities in liver, kidney, and muscle were similar for each species. CPK activity was much higher in muscle than in liver or kidney and, of the five enzymes studied, may be the best indicator of muscle damage. Most of the other enzymes were more evenly distributed among the three tissues, and no organ-specific enzyme could be identified for liver or kidney. Because of interspecific variations in plasma enzyme activities, it is important to establish baseline values for each species to ensure accurate interpretation of results.  相似文献   

9.
The effect of ethyl eicosapentanoate (EPA-E) on statin-induced rhabdomyolysis was investigated by co-administration of EPA-E and pravastatin (PV), as a typical statin, to Eisai hyperbilirubinemic rats (EHBR). It was confirmed that the plasma PV concentration was not affected by simultaneous administration of EPA-E, and there was no cumulative increase of PV during prolonged co-administration of EPA-E and PV. Muscular degeneration was prominent (incidence 5/5; average grade 3.5 (range 2-4)) in EHBR treated with PV alone at 200 mg/kg/day for 14 days, but co-administration of EPA-E at doses of 100, 300, and 1000 mg/kg/day decreased the average grades to 1.4 (range 0.3-3.0), 0.5 (0.2-1.0), and 0.6 (0.0-1.7), respectively. Creatine phosphokinase (CPK) and myoglobin levels in plasma were well correlated with the grade of skeletal muscle degeneration. Thus, EPA-E appears to reduce the severity of statin-induced rhabdomyolysis.  相似文献   

10.
The accumulation of octanoic (OA) and decanoic (DA) acids in tissue is the common finding in medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD), the most frequent defect of fatty acid oxidation. Affected patients present hypoketotic hypoglycemia, rhabdomyolysis, hepatomegaly, seizures and lethargy, which may progress to coma and death. At present, the pathophysiological mechanisms underlying hepatic and skeletal muscle alterations in affected patients are poorly known. Therefore, in the present work, we investigated the in vitro effects of OA and DA, the accumulating metabolites in MCADD, on various bioenergetics and oxidative stress parameters. It was verified that OA and DA decreased complexes I-III, II-III and IV activities in liver and also inhibit complex IV activity in skeletal muscle. In addition, DA decreased complexes II-III activity in skeletal muscle. We also verified that OA and DA increased TBA-RS levels and carbonyl content in both tissues. Finally, DA, but not OA, significantly decreased GSH levels in rat skeletal muscle. Our present data show that the medium-chain fatty acids that accumulate in MCADD impair electron transfer through respiratory chain and elicit oxidative damage in rat liver and skeletal muscle. It may be therefore presumed that these mechanisms are involved in the pathophysiology of the hepatopathy and rhabdomyolysis presented by MCADD-affected patients.  相似文献   

11.
Overt systemic inflammatory response is a predisposing mechanism for infection-induced skeletal muscle damage and rhabdomyolysis. Aberrant DNA methylation plays a crucial role in the pathophysiology of excessive inflammatory response. The antiarrhythmic drug procainamide is a non-nucleoside inhibitor of DNA methyltransferase 1 (DNMT1) used to alleviate DNA hypermethylation. Therefore, we evaluated the effects of procainamide on the syndromes and complications of rhabdomyolysis rats induced by lipopolysaccharide (LPS). Rhabdomyolysis animal model was established by intravenous infusion of LPS (5 mg/kg) accompanied by procainamide therapy (50 mg/kg). During the experimental period, the changes of hemodynamics, muscle injury index, kidney function, blood gas, blood electrolytes, blood glucose, and plasma interleukin-6 (IL-6) levels were examined. Kidneys and lungs were exercised to analyze superoxide production, neutrophil infiltration, and DNMTs expression. The rats in this model showed similar clinical syndromes and complications of rhabdomyolysis including high levels of plasma creatine kinase, acute kidney injury, hyperkalemia, hypocalcemia, metabolic acidosis, hypotension, tachycardia, and hypoglycemia. The increases of lung DNMT1 expression and plasma IL-6 concentration were also observed in rhabdomyolysis animals induced by LPS. Treatment with procainamide not only inhibited the overexpression of DNMT1 but also diminished the overproduction of IL-6 in rhabdomyolysis rats. In addition, procainamide improved muscle damage, renal dysfunction, electrolytes disturbance, metabolic acidosis, hypotension, and hypoglycemia in the rats with rhabdomyolysis. Moreover, another DNMT inhibitor hydralazine mitigated hypoglycemia, muscle damage, and renal dysfunction in rhabdomyolysis rats. These findings reveal that therapeutic effects of procainamide could be based on the suppression of DNMT1 and pro-inflammatory cytokine in endotoxin-induced rhabdomyolysis.  相似文献   

12.
Serum and organ creatine phosphokinase alterations in exercise.   总被引:1,自引:0,他引:1  
Rats that swam for 3 h showed a 6-fold increase in serum creatine phosphokinase (SCPK) activity which declined to control values within 7 h after swimming. Of the excess SCPK, 77% was BB isoenzyme; the remainder was mainly MM with traces of MB. Kidney, liver, brain and lung contain mainly BB (50-80%) and only a trace of MB (0-7%). Heart CPK was composed of little BB (8%) and more MB (28%) and MM (64%). Skeletal muscle CPK was almost entirely MM. CPK activity is highest in skeletal muscle, intermediate in heart and brain and lowest in kidney, liver and lung. It is suggested that skeletal muscle and heart are not involved in CPK release in swimming, and kidney, liver and brain may be sites of release.  相似文献   

13.
Dysfunctional skeletal muscle calcium homeostasis plays a central role in the pathophysiology of several human and animal skeletal muscle disorders, in particular, genetic disorders associated with ryanodine receptor 1 (RYR1) mutations, such as malignant hyperthermia, central core disease, multiminicore disease and certain centronuclear myopathies. In addition, aberrant skeletal muscle calcium handling is believed to play a pivotal role in the highly prevalent disorder of Thoroughbred racehorses, known as Recurrent Exertional Rhabdomyolysis. Traditionally, such defects were studied in human and equine subjects by examining the contractile responses of biopsied muscle strips exposed to caffeine, a potent RYR1 agonist. However, this test is not widely available and, due to its invasive nature, is potentially less suitable for valuable animals in training or in the human paediatric setting. Furthermore, increasingly, RYR1 gene polymorphisms (of unknown pathogenicity and significance) are being identified through next generation sequencing projects. Consequently, we have investigated a less invasive test that can be used to study calcium homeostasis in cultured, skin-derived fibroblasts that are converted to the muscle lineage by viral transduction with a MyoD (myogenic differentiation 1) transgene. Similar models have been utilised to examine calcium homeostasis in human patient cells, however, to date, there has been no detailed assessment of the cells’ calcium homeostasis, and in particular, the responses to agonists and antagonists of RYR1. Here we describe experiments conducted to assess calcium handling of the cells and examine responses to treatment with dantrolene, a drug commonly used for prophylaxis of recurrent exertional rhabdomyolysis in horses and malignant hyperthermia in humans.  相似文献   

14.
In a study of 4-hr hemorrhagic hypotension in dogs, the plasma levels of the lysosomal enzymes, cathepsin (CATH) and acid phosphatase (AP) showed early and progressive increases in activity. The plasma levels of the intestinal fraction of alkaline phosphatase (IAkP) and aspartate aminotransferase (AAT) were increased after 2 hr of hypotension and the liver specific enzyme, ornithine carbamyltransferase (OCT), and creatine phosphokinase (CPK), after 3 hr. All of the enzymes showed large increases after 4 hr of hypotension. The plasma levels of CATH showed the earliest and largest relative increase indicating that with the shock model used, this enzyme was the most sensitive indicator of shock severity. The increase in plasma enzyme levels was probably the result of tissue damage in the splanchnic region but the elevation of plasma CPK, a muscle specific enzyme, indicates some muscle cell damage as well. While the increase in the plasma enzyme activity is probably due, in large part, to cellular damage, it is likely that a decreased enzyme removal rate--resulting from a hypofunctional RES--also contributes to the elevated plasma enzyme levels during hemorrhagic hypotension.  相似文献   

15.

Background

Exertional rhabdomyolysis syndrome is recognised in many athletic horse breeds and in recent years specific forms of the syndrome have been identified. However, although Standardbred horses are used worldwide for racing, there is a paucity of information about the epidemiological and performance-related aspects of the syndrome in this breed. The objectives of this study therefore were to determine the incidence, risk factors and performance effects of exertional rhabdomyolysis syndrome in Standardbred trotters and to compare the epidemiology and genetics of the syndrome with that in other breeds.

Methodology/Principal Findings

A questionnaire-based case-control study (with analysis of online race records) was conducted following identification of horses that were determined susceptible to exertional rhabdomyolysis (based on serum biochemistry) from a total of 683 horses in 22 yards. Thirty six exertional rhabdomyolysis-susceptible horses were subsequently genotyped for the skeletal muscle glycogen synthase (GYS1) mutation responsible for type 1 polysaccharide storage myopathy. A total of 44 susceptible horses was reported, resulting in an annual incidence of 6.4 (95% CI 4.6–8.2%) per 100 horses. Female horses were at significantly greater risk than males (odds ratio 7.1; 95% CI 2.1–23.4; p = 0.001) and nervous horses were at a greater risk than horses with calm or average temperaments (odds ratio 7.9; 95% CI 2.3–27.0; p = 0.001). Rhabdomyolysis-susceptible cases performed better from standstill starts (p = 0.04) than controls and had a higher percentage of wins (p = 0.006). All exertional rhabdomyolysis-susceptible horses tested were negative for the R309H GYS1 mutation.

Conclusions/Significance

Exertional rhabdomyolysis syndrome in Standardbred horses has a similar incidence and risk factors to the syndrome in Thoroughbred horses. If the disorder has a genetic basis in Standardbreds, improved performance in susceptible animals may be responsible for maintenance of the disorder in the population.  相似文献   

16.
Physiological control of the plasma membrane sodium pump, (Na+,K+)-ATPase, is essential for proper function of eukaryotic cells. In the electric organ of the elasmobranch Narcine brasiliensis, the normal demands placed upon the pump during the process of generation of electrical currents call for large and rapid changes in activity of this enzyme, making this a good model for the study of its cellular regulation. 31P NMR spectroscopic techniques were used to study metabolic regulation of membrane pump function in resting and stimulated electric organ and in skeletal muscle of the live, intact N. brasiliensis. Because the ATP synthetic abilities of the electric organ by glycolysis or oxidative phosphorylation are extremely limited, depletion of phosphocreatinine (PCr) could be used to determine the activity of the (Na+,K+)-ATPase after the electric organ was stimulated to discharge, and to measure the net flux from PCr to ATP through the creatine phosphokinase (CPK) reaction in the electric organ. Saturation transfer, an NMR technique which measures exchange rates, was applied to determine the unidirectional flux in the forward direction through the same reaction in the electric organ and in skeletal muscle as a control. The pseudo first-order rate constant kf for the CPK reaction at 24 degrees C in resting electric organ was 0.000 +/- 0.002 s-1 (n = 10) and in skeletal muscle was 0.08 +/- 0.03 s-1 (n = 3). The results demonstrate that in resting electric organ, which is well supplied with CPK, there was no measurable flux through this reaction, although CPK when extracted is highly active. Measured and calculated levels of all substrates for the creatine kinase reaction in the electric organ are similar to those in unstimulated skeletal muscle, where the creatine phosphokinase reaction rates are high in vivo. In contrast to the resting electric organ, during stimulation of the electric organ the measured net rate constant was greater than 0.08 s-1. In addition, as shown by lack of PCr depletion, there was virtually no net turnover of ATP in the resting organ compared to the stimulated organ. The marked difference in the (Na+,K+)-ATPase activity in the resting and activated electric organ confirmed earlier results (Blum, H., Nioka, S., and Johnson, R. G., Jr. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 1247-1251). Together, these results suggest that there is a novel method of coordinate regulation of cellular enzymes of great sensitivity and rapidity.  相似文献   

17.
1. Substantial increases in total creatine phosphokinase (CPK) and in isoenzymes from heart (CPK-MB) and skeletal muscle (CPK-MM) were observed during acute infections with the House 510 and House 11 strains of Trypanosoma cruzi. 2. In infections with the reticulotropic Tulahuen strain total CPK levels were lower and the isoenzyme pattern was essentially normal. 3. Gamma-glutamyl transpeptidase was considerably increased in the Tulahuen but not in the House 510 and House 11 infections. 4. These findings are useful in assessing tissue damage during T. cruzi infections and they also demonstrate differences between myotropic and reticulotropic strains which may aid in their taxonomic classification.  相似文献   

18.
Cleary, MA, Sadowski, KA, Lee, SY-C, Miller, GL, and Nichols, AW. Exertional rhabdomyolysis in an adolescent athlete during preseason conditioning: a perfect storm. J Strength Cond Res 25(12): 3506-3513, 2011-The purpose of this brief review is to present a case of a healthy, male adolescent athlete (age = 16 years, body mass = 67.9 kg, height = 165.5 cm) who participated in a 3-day preseason wrestling camp which resulted in hospitalization for exertional rhabdomyolysis. As part of the preseason conditioning program directed by the coaches, the athlete completed 60 minutes of short, intense intervals of wall-sits, squats, sit-ups, push-ups, lunges, and plyometric jumps. The following day, the athlete continued his vigorous training consisting of running drills. That night he noticed voiding dark brown urine the color of cola. The day after the camp ended, the athlete reported to his Athletic Trainers with the chief complaint of severe bilateral leg pain in his quadriceps. Two days after the initial assessment, he was admitted to the hospital where he was diagnosed with exertional rhabdomyolysis based on creatine kinase (CK) levels that peaked at 146,000 IU·L, elevated far beyond normal (normal range = 58-280 IU·L). The athlete was hospitalized for 6 days where he received intravenous normal saline for rehydration, and his CK levels were assessed daily. Athletic Trainers, personal trainers, physical education teachers, and coaches should be aware that exertional rhabdomyolysis is the most common form of rhabdomyolysis and affects individuals who participate in novel and intense exercise to which they are unaccustomed. Stressful ambient conditions may lead to dehydration and exacerbation of the condition, particularly when the individual is not accustomed to the exercise intensity.  相似文献   

19.
Inadvertent ingestion of thiafentanil oxalate by a captive adult female mountain lion (Puma concolor) caused a prolonged clinical syndrome that included sedation and depression, muscle tension, and myopathy that was incompletely antagonized by naltrexone HCl. A serum chemistry profile revealed markedly elevated creatinine phosphokinase (CK; 490,450 IU/l), alanine aminotransferase (ALT; 1,896 IU/l), and aspartate aminotransferase (AST; 4,321 IU/l) 2 days after onset. The affected animal's condition gradually improved over the next 15 days in response to supportive therapy that included diazepam (5 mg as needed), Normasol R (3 l/day), dexamethasone (tapering dose starting at 1 mg/kg), and ketoprofen (1 mg/kg). She eventually recovered completely. Based on these observations, carcasses of animals immobilized with thiafentanil should be marked and disposed of properly to preclude opportunities for secondary exposure and potential intoxication in scavenging species. In addition, caution is advised when using thiafentanil in animals that could be preyed upon before full metabolism of the drug.  相似文献   

20.
In laboratory rodents, caloric restriction (CR) retards several age-dependent physiological and biochemical changes in skeletal muscle, including increased steady-state levels of oxidative damage to lipids, DNA, and proteins. We used immunogold electron microscopic (EM) techniques with antibodies raised against 4-hydroxy-2-nonenal (HNE) -modified proteins, dinitrophenol, and nitrotyrosine to quantify and localize the age-dependent accrual of oxidative damage in rhesus monkey vastus lateralis skeletal muscle. Using immunogold EM analysis of muscle from rhesus monkeys ranging in age from 2 to 34 years old, a fourfold maximal increase in levels of HNE-modified proteins was observed. Likewise, carbonyl levels increased approximately twofold with aging. Comparing 17- to 23-year-old normally fed to age-matched monkeys subjected to CR for 10 years, levels of HNE-modified proteins, carbonyls, and nitrotyrosine in skeletal muscle from the CR group were significantly less than control group values. Oxidative damage largely localized to myofibrils, with lesser labeling in other subcellular compartments. Accumulation of lipid peroxidation-derived aldehydes, such as malondialdehyde and 4-hydroxy-2-alkenals, and protein carbonyls were measured biochemically and confirmed the morphological data. Our study is the first to quantify morphologically and localize the age-dependent accrual of oxidative damage in mammalian skeletal muscle and to demonstrate that oxidative damage in primates is lowered by CR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号