首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Galactocerebroside-phospholipid interactions in bilayer membranes.   总被引:4,自引:3,他引:1       下载免费PDF全文
Differential scanning calorimetry (DSC) and x-ray diffraction have been used to study the interaction of hydrated N-palmitoylgalactosylsphingosine (NPGS) and dipalmitoylphosphatidylcholine (DPPC). For mixtures containing less than 23 mol% NPGS, complete miscibility of NPGS into hydrated DPPC bilayers is observed in both the bilayer gel and liquid-crystal phases. X-ray diffraction data demonstrate insignificant differences in the DPPC-bilayer gel-phase parameters on incorporation of up to 23 mol% NPGS. At greater than 23 mol% NPGS, additional high-temperature transitions occur, indicating phase separation of cerebroside. For these cerebroside concentrations, at 20 degrees C, x-ray diffraction shows two lamellar phases, hydrated DPPC-NPGS gel bilayers (d = 64 A) containing 23 mol% NPGS, and NPGS "crystal" bilayers (d = 55 A). On heating to temperatures greater than 45 degrees C, the mixed DPPC-NPGS bilayer phase undergoes chain melting, and on further increasing the temperature progressively more NPGS is incorporated into the liquid-crystal DPPC-NPGS bilayer phase. At temperatures greater than 82 degrees C (the transition temperature of hydrated NPGS), complete lipid miscibility is observed at all DPPC/NPGS molar ratios.  相似文献   

2.
The interaction of the galactocerebroside, N-palmitoylgalactosylsphingosine (NPGS), with cholesterol has been studied by differential scanning calorimetry (DSC) and x-ray diffraction. Thermal and structural studies demonstrate complex behavior characterized by two endothermic transitions: transition I (TI approximately equal to 50-60 degrees C) corresponding to an NPGS-cholesterol bilayer gel----bilayer liquid crystal transition II (TII where TI less than TII less than TNPGS) corresponding to an NPGS bilayer crystal (stable E form)----bilayer liquid crystal transition. For mixtures containing from 6 to 80 mol % cholesterol, x-ray diffraction studies at 22 degrees C (T less than TI) indicate two separate lamellar phases; an NPGS crystal bilayer phase and a cholesterol monohydrate phase. For cholesterol concentrations less than 50 mol % at TI less than T less than TII, NPGS-cholesterol liquid crystal bilayer and excess NPGS crystal bilayer phases are observed. For greater than 50 mol % cholesterol concentrations at these temperatures, an excess cholesterol monohydrate phase coexists with the NPGS-cholesterol liquid crystal bilayers. At T greater than TII, complete NPGS-cholesterol miscibility is only observed for less than 50 mol % cholesterol concentrations, whereas at greater than 50 mol % cholesterol an excess cholesterol phase is present. The solid phase immiscibility of cerebroside and cholesterol at low temperatures is suggested to result from preferential NPGS-NPGS associations via hydrogen bonding. The unique thermal and structural behavior of NPGS-cholesterol dispersions is contrasted with the behavior of cholesterol-phosphatidycholine and cholesterol-sphingomyelin bilayers. Thermal and structural studies of NPGS in dipalmitoylphosphatidylcholine (DPPC)/cholesterol (1:1, molar ratio) bilayers have been performed. For dispersions containing less than 20 mol % NPGS at 22 degrees C there are no observable calorimetric transitions and x-ray diffraction studies indicate complete lipid miscibility. At greater than 20 mol % NPGS, a high temperature transition is observed that is shown by x-ray diffraction studies to be due to an excess NPGS crystal bilayer----liquid crystal bilayer transition. Complete miscibility of NPGS in DPPC/cholesterol bilayers is observed at T greater than TNPGS. The properties of NPGS/DPPC/cholesterol bilayers are discussed in terms of the lipid composition of the myelin sheath.  相似文献   

3.
Small-angle neutron scattering on extruded unilamellar vesicles in water was used to study bilayer thickness when cholesterol (CHOL) was added to dilauroylphosphatidylcholine (DLPC) and dioleoylphosphatidylcholine (DOPC) bilayers in molar fraction 0.44. Using the H2O/2H2O contrast variation and the small-angle form of Kratky-Porod approximation, the bilayer gyration radius at infinite contrast R(g,infinity) and the bilayer thickness parameter d(g,infinity) = 12(0.5)R(g,infinity) were obtained at 25 degrees C. Addition of CHOL to DLPC increased the d(g,infinity) from 4.058 +/- 0.028 nm to 4.62 +/- 0.114 nm, while in case of DOPC the d(g,infinity) values were the same in the absence (4.618 +/- 0.148 nm) and in the presence (4.577 +/- 0.144 nm) of CHOL within experimental errors. The role of CHOL-induced changes of bilayer thickness in the protein insertion, orientation and function in membranes is discussed.  相似文献   

4.
Yamaguchi S  Hong T  Waring A  Lehrer RI  Hong M 《Biochemistry》2002,41(31):9852-9862
Protegrin-1 (PG-1) is a broad-spectrum beta-sheet antimicrobial peptide found in porcine leukocytes. The mechanism of action and the orientation of PG-1 in lipid bilayers are here investigated using (2)H, (31)P, (13)C, and (15)N solid-state NMR spectroscopy. (2)H spectra of mechanically aligned and chain-perdeuterated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) bilayers indicate that PG-1 at high concentrations destroys the orientational order of the aligned lamellar bilayer. The conformation of the lipid headgroups in the unoriented region is significantly altered, as seen from the (31)P spectra of POPC and the (2)H spectra of headgroup-deuterated 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine. These observations indicate that PG-1 disrupts microbial membranes by breaking the extended bilayer into smaller disks, where a significant fraction of lipids is located in the edges of the disks with a distribution of orientations. These edges allow the lipid bilayer to bend back on itself as in toroidal pores. Interestingly, this loss of bilayer orientation occurs only in long-chain lipids such as POPC and not in shorter chain lipids such as 1,2-dilauroyl-sn-glycero-3-phosphatidylcholine (DLPC). To understand the mode of binding of PG-1 to the lipid bilayer, we determined the orientation of PG-1 in DLPC bilayers. The (13)CO and (15)N chemical shifts of Val-16 labeled PG-1 indicate that the beta-strand axis is tilted by 55 degrees +/- 5 degrees from the bilayer normal while the normal of the beta-sheet plane is 48 degrees +/- 5 degrees from the bilayer normal. This orientation favors interaction of the hydrophobic backbone of the peptide with the hydrophobic core of the bilayer and positions the cationic Arg side chains to interact with the anionic phosphate groups. This is the first time that the orientation of a disulfide-stabilized beta-sheet membrane peptide has been determined by solid-state NMR.  相似文献   

5.
Solid-state nuclear magnetic resonance (NMR) spectroscopy and X-ray powder diffraction were used to investigate the mechanism of trehalose (TRE) stabilization of lipid bilayers. Calorimetric investigation of dry TRE-stabilized bilayers reveals a first-order phase transition (L kappa----L lambda) at temperatures similar to the L beta'----(P beta')----L alpha transition of hydrated lipid bilayers. X-ray diffraction studies show that dry mixtures of TRE and 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) have a lamellar structure with excess crystalline TRE being present. The L kappa phase shows typical gel-phase X-ray diffraction patterns. In contrast, the L lambda-phase diffraction patterns indicate disordered hydrocarbon chains. 2H NMR of specifically 2H chain-labeled DPPC confirmed that the acyl chains are disordered in the L lambda phase over their entire lengths. 2H spectra of the choline headgroup show hindered molecular motions as compared to dry DPPC alone, and 13C spectra of the sn-2-carbonyl show rigid lattice powder patterns indicating very little motion at the headgroup and interfacial regions. Thus, the sugar interacts extensively with the hydrophilic regions of the lipid, from the choline and the phosphate moieties in the headgroup to the glycerol and carbonyls in the interfacial region. We postulate that the sugar and the lipid form an extensive hydrogen-bonded network with the sugar acting as a spacer to expand the distance between lipids in the bilayer. The fluidity of the hydrophobic region in the L lambda phase together with the bilayer stabilization at the headgroup contributes to membrane viability in anhydrobiotic organisms.  相似文献   

6.
Differential scanning calorimetry and x-ray diffraction have been utilized to investigate the interaction of N-stearoylsphingomyelin (C18:0-SM) with cholesterol and dipalmitoylphosphatidylcholine (DPPC). Fully hydrated C18:0-SM forms bilayers that undergo a chain-melting (gel -->liquid-crystalline) transition at 45 degrees C, delta H = 6.7 kcal/mol. Addition of cholesterol results in a progressive decrease in the enthalpy of the transition at 45 degrees C and the appearance of a broad transition centered at 46.3 degrees C; this latter transition progressively broadens and is not detectable at cholesterol contents of >40 mol%. X-ray diffraction and electron density profiles indicate that bilayers of C18:0-SM/cholesterol (50 mol%) are essentially identical at 22 degrees C and 58 degrees C in terms of bilayer periodicity (d = 63-64 A), bilayer thickness (d rho-p = 46-47 A), and lateral molecular packing (wide-angle reflection, 1/4.8 A-(1)). These data show that cholesterol inserts into C18:0-SM bilayers, progressively removing the chain-melting transition and altering the bilayer structural characteristics. In contrast, DPPC has relatively minor effects on the structure and thermotropic properties of C18:0-SM. DPPC and C18:0-SM exhibit complete miscibility in both the gel and liquid-crystalline bilayer phases, but the pre-transition exhibited by DPPC is eliminated at >30 mol% C18:0-SM. The bilayer periodicity in both the gel and liquid-crystalline phases decreases significantly at high DPPC contents, probably reflecting differences in hydration and/or chain tilt (gel phase) of C18:0-SM and DPPC.  相似文献   

7.
The conformation and molecular packing of permethylated beta-D-galactosyl-N-octadecanoyl-D-spingosine (cerebroside) was determined by X-ray single crystal analysis at 185 K (R = 0.16). The lipid crystallizes in the orthorhombic space group P2(1)2(1)2(1) with the unit cell dimensions a = 8.03, b = 7.04 and c = 88.10 A. The four molecules in the unit cell pack in a bilayer arrangement with tilting (48 degrees) hydrocarbon chains. The direction of the chain tilt alternates in the two bilayer halves and in adjacent bilayers. In order to define the effect of hydrogen bonds on the molecular conformation the structural features of the permethylated cerebroside are compared with that of unsubstituted cerebroside (I. Pascher and S. Sundell (1977) Chem. Phys. Lipids 20, 179). It is shown that methylation of the hydrogen donor groups does not affect the conformation of the ceramide part. However, by abolishing the intramolecular hydrogen bond between the amide N--H group and the glycosidic oxygen the galactose ring changes its orientation from layer-parallel to layer-perpendicular. Calculations using molecular mechanics, MM2(87), show that in natural cerebroside the intramolecular hydrogen bond stabilizes the theta 1 = -syn-clinal conformation about the C(1)--C(2) sphingosine bond by 2-2.5 kcal/mol compared to other staggered conformations. The significance of the L shape of the native cerebroside, making both the carbohydrate and polar ceramide groups accessible as a binding epitope in recognition processes, is discussed.  相似文献   

8.
A series of 2H NMR inversion recovery experiments in the L alpha phase of the cerebroside N-palmitoylgalactosylsphingosine (NPGS) have been performed. In these liquid crystalline lipid bilayers we have observed substantial anisotropy in the spin-lattice relaxation of the CD2 groups in the acyl chains. The form and magnitude of the anisotropy varies with position in the chain, being positive in the upper region, decreasing to zero at the 4-position, and reversing sign at the lower chain positions. It is also shown that addition of cholesterol to the bilayer results in profound changes in the anisotropy. These observations are accounted for by a simple motional model of discrete hops among nine sites, which result from the coupling of two modes of motion--long-axis rotational diffusion and gauche-trans isomerization. This model is employed in quantitative simulations of the spectral line shapes and permits determination of site populations and motional rates. These results, plus preliminary results in sphingomyelin and lecithin bilayers, illustrate the utility of T1 anisotropy measurements as a probe of dynamics in L alpha-phase bilayers.  相似文献   

9.
Giant bilayer vesicles were reconstituted from several lipids and lipid/cholesterol (CHOL) mixtures: stearolyloleoylphosphatidylcholine (SOPC), bovine sphingomyelin (BSM), diarachidonylphosphatidylcholine (DAPC), SOPC/CHOL, BSM/CHOL, DAPC/CHOL, and extracted red blood cell (RBC) lipids with native cholesterol. Single-walled vesicles were manipulated by micropipette suction and several membrane material properties were determined. The properties measured were the elastic area compressibility modulus K, the critical areal strain alpha c, and the tensile strength tau lys, from which the failure energy or membrane toughness Tf was calculated. The elastic area expansion moduli for these lipid and lipid/cholesterol bilayers ranged from 57 dyn/cm for DAPC to 1,734 dyn/cm for BSM/CHOL. The SOPC/CHOL series and RBC lipids had intermediate values. The results indicated that the presence of cholesterol is the single most influential factor in increasing bilayer cohesion, but only for lipids where both chains are saturated, or mono- or diunsaturated. Multiple unsaturation in both lipid chains inhibits the condensing effect of cholesterol in bilayers. The SOPC/CHOL system was studied in more detail. The area expansion modulus showed a nonlinear increase with increasing cholesterol concentration up to a constant plateau, indicating a saturation limit for cholesterol in the bilayer phase of approximately 55 mol% CHOL. The membrane compressibility was modeled by a property-averaging composite theory involving two bilayer components, namely, uncomplexed lipid and a lipid/cholesterol complex of stoichiometry 1/1.22. The area expansion modulus of this molecular composite membrane was evaluated by a combination of the expansion moduli of each component scaled by their area fractions in the bilayer. Bilayer toughness, which is the energy stored in the bilayer at failure, showed a maximum value at approximately 40 mol% CHOL. This breakdown energy was found to be only a fraction of the available thermal energy, implying that many molecules (approximately 50-100) may be involved in forming the defect structure that leads to failure. The area expansion modulus of extracted RBC lipids with native cholesterol was compared with recent measurements of intact RBC membrane compressibility. The natural membrane was also modeled as a simple composite made up to a compressible lipid/cholesterol matrix containing relatively incompressible transmembrane proteins. It appears that the interaction of incompressible proteins with surrounding lipid confers enhanced compressibility on the composite structure.  相似文献   

10.
S Das  R P Rand 《Biochemistry》1986,25(10):2882-2889
The effects of incorporating diacylglycerol (DG) derived from egg phosphatidylcholine (PC) into PC, egg phosphatidylethanolamine (PE), and bovine phosphatidylserine (PS) have been measured. In excess solution DG induces a multilamellar-to-hexagonal (L-H) structural transition in PE and PC that is temperature dependent. At 37 degrees C it begins at about 3 and 30 mol%, respectively. In PC at lower DG concentrations a modified lamellar phase is formed; at about 70 mol% DG a single primitive cubic phase forms. An L-H transition induced by 20-30 mol% DG in PS is dependent on ionic strength and degree of lipid hydration, with the appearance of crystalline acyl chains at the higher DG levels. Calcium precipitates of DG/PS (1/1) mixtures have melted chains. Structural parameters were derived for the lamellar phases at subtransition levels of DG in PE and PC. The area per polar group is increased, but by contrast with cholesterol, the polar group spreading is not accompanied by an increase in bilayer thickness. DG does not affect the equilibrium separation of PC or PE bilayers. Measured interbilayer forces as they vary with bilayer separation show that DG at 20 mol% does not effect closer apposition of PC bilayers at any separation. Spreading the polar groups may effect the binding of protein kinase C or the activation of phospholipases; the nonlamellar phases may be linked to the biochemical production of DG in cellular processes involving membrane fusion.  相似文献   

11.
The conformation and dynamics of melittin bound to the dimyristoylphosphatidylcholine (DMPC) bilayer and the magnetic orientation in the lipid bilayer systems were investigated by solid-state (31)P and (13)C NMR spectroscopy. Using (31)P NMR, it was found that melittin-lipid bilayers form magnetically oriented elongated vesicles with the long axis parallel to the magnetic field above the liquid crystalline-gel phase transition temperature (T(m) = 24 degrees C). The conformation, orientation, and dynamics of melittin bound to the membrane were further determined by using this magnetically oriented lipid bilayer system. For this purpose, the (13)C NMR spectra of site-specifically (13)C-labeled melittin bound to the membrane in the static, fast magic angle spinning (MAS) and slow MAS conditions were measured. Subsequently, we analyzed the (13)C chemical shift tensors of carbonyl carbons in the peptide backbone under the conditions where they form an alpha-helix and reorient rapidly about the average helical axis. Finally, it was found that melittin adopts a transmembrane alpha-helix whose average axis is parallel to the bilayer normal. The kink angle between the N- and C-terminal helical rods of melittin in the lipid bilayer is approximately 140 degrees or approximately 160 degrees, which is larger than the value of 120 degrees determined by x-ray diffraction studies. Pore formation was clearly observed below the T(m) in the initial stage of lysis by microscope. This is considered to be caused by the association of melittin molecules in the lipid bilayer.  相似文献   

12.
The orientation of a beta-sheet membrane peptide in lipid bilayers is determined, for the first time, using two-dimensional (2D) (15)N solid-state NMR. Retrocyclin-2 is a disulfide-stabilized cyclic beta-hairpin peptide with antibacterial and antiviral activities. We used 2D separated local field spectroscopy correlating (15)N-(1)H dipolar coupling with (15)N chemical shift to determine the orientation of multiply (15)N-labeled retrocyclin-2 in uniaxially aligned phosphocholine bilayers. Calculated 2D spectra exhibit characteristic resonance patterns that are sensitive to both the tilt of the beta-strand axis and the rotation of the beta-sheet plane from the bilayer normal and that yield resonance assignment without the need for singly labeled samples. Retrocyclin-2 adopts a transmembrane orientation in dilauroylphosphatidylcholine bilayers, with the strand axis tilted at 20 degrees +/- 10 degrees from the bilayer normal, but changes to a more in-plane orientation in thicker 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidyl-choline (POPC) bilayers with a tilt angle of 65 degrees +/- 15 degrees . These indicate that hydrophobic mismatch regulates the peptide orientation. The 2D spectra are sensitive not only to the peptide orientation but also to its backbone (phi, psi) angles. Neither a bent hairpin conformation, which is populated in solution, nor an ideal beta-hairpin with uniform (phi, psi) angles and coplanar strands, agrees with the experimental spectrum. Thus, membrane binding orders the retrocyclin conformation by reducing the beta-sheet curvature but does not make it ideal. (31)P NMR spectra of lipid bilayers with different compositions indicate that retrocyclin-2 selectively disrupts the orientational order of anionic membranes while leaving zwitteronic membranes intact. These structural results provide insights into the mechanism of action of this beta-hairpin antimicrobial peptide.  相似文献   

13.
We investigated the effect of the antineoplastic drug doxorubicin on the order of the acyl chains in liquid-crystalline mixed bilayers consisting of dioleoylphosphatidylserine (DOPS) or -phosphatidic acid (DOPA), and dioleoylphosphatidylcholine (DOPC) or -phosphatidylethanolamine (DOPE). Previous 2H-NMR studies on bilayers consisting of a single species of di[11,11-2H2]oleoyl-labeled phospholipid showed that doxorubicin does not affect the acyl chain order of pure zwitterionic phospholipid but dramatically decreases the order of anionic phospholipid [de Wolf, F. A., et al. (1991) Biochim. Biophys. Acta 1096, 67-80]. In the present work, we studied mixed bilayers in which alternatively the anionic or the zwitterionic phospholipid component was 2H-labeled so as to monitor its individual acyl chain order. Doxorubicin decreased the order parameter of the mixed anionic and zwitterionic lipids by approximately the same amount and did not induce a clear segregation of the lipid components into extended, separate domains. The drug had a comparable disordering effect on mixed bilayers of unlabeled cardiolipin and 2H-labeled zwitterionic phospholipid, indicating the absence of extensive segregation also in that case. Upon addition of doxorubicin to bilayers consisting of 67 mol% DOPE and 33 mol% anionic phospholipid, a significant part of the lipid adopted the inverted hexagonal (HII) phase at 25 degrees C. This bilayer destabilization, which occurred only in mixtures of anionic phospholipid and sufficient amounts of DOPE, might be of physiological importance. Even upon formation of extended HII-phase domains, lipid segregation was not clearly detectable, since the relative distribution of 2H-labeled anionic phospholipid and [2H]DOPE between the bilayer phase and HII phase was very similar. Our findings argue against a role of extensive anionic/zwitterionic lipid segregation in the mechanism of action and toxicity of doxorubicin.  相似文献   

14.
Differential scanning calorimetry (DSC), polarizing microscopy and X-ray diffraction studies have been performed on dry and hydrated natural bovine brain sulfatides. Dry sulfatide fractions exhibit a high temperature transition (delta H = 6.6 kcal/mol sulfatide) at 87.3 degrees C. X-ray diffraction shows this transition to be associated with a hydrocarbon chain order-disorder transformation between two lamellar phases. Hydrated sulfatide dispersions undergo a complex chain order-disorder transition (delta H = 7.5 kcal/mol sulfatide) at 32 degrees C with two peak temperatures at 35 degrees C and 47 degrees C. Structural studies performed on hydrated liquid-crystal sulfatide dispersions at 75 degrees C verify the existence of a bilayer structure over the 16 wt.% to 50 wt.% phosphate buffer (pH = 7.4) range. The interbilayer separation between galactosyl-3-sulfate groups averages 48 A as the multilamellar bilayers swell with the addition of phosphate buffer. The formation of micellar phases is not observed at high water contents. The comparison of the structural characteristics of dry and hydrated sulfatides with structural data for dry and hydrated bovine brain non-sulfated glycolipid (cerebroside) is discussed in molecular terms.  相似文献   

15.
Differential scanning calorimetry (DSC) studies of the ice-water transition of N-palmitoylgalactosylsphingosine (NPGS) (cerebroside)/water mixtures indicate 4 +/- 1 non-freezable water molecules per molecule NPGS. This hydration level, representing strongly bound water, is identical to that observed previously for human glucocerebroside (Bach, D., Sela, B. and Miller, I.R. (1982) Chem. Phys. Lipids 31, 381). Comparison of gluco- and galacto-cerebroside hydration with hydration measurements on simple monosaccharides suggests a favored orientation of the glycosyl polar group at the cerebroside-water interface.  相似文献   

16.
C W Lee  J S Waugh  R G Griffin 《Biochemistry》1986,25(13):3737-3742
31P and 2H solid-state NMR studies of dry trehalose (TRE) and 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) mixtures are reported. 31P spectra are consistent with a rigid head group above and below the calorimetric phase transition for both dry DPPC and a dry 2:1 TRE/DPPC mixture. In addition, 2H spectra of DPPC labeled at the 7-position of the sn-2 chain (2[7,7-2H2]DPPC) show exchange-narrowed line shapes with a width of 120 kHz over the temperature range 25-75 degrees C. These line shapes can be simulated with a model involving two-site jumps of the deuteron. In contrast, the 2H NMR spectrum of a dry 2:1 TRE/2[7,7-2H2]DPPC mixture above the phase transition (Tc = 46 degrees C) is narrowed by a factor of approximately 4 to a width of 29 kHz. Simulation of this spectrum requires a model involving four-site jumps of the deuteron and is indicative of highly disordered lipid acyl chains similar to those found in the L alpha-phases of hydrated lipids. Thus, TRE/DPPC mixtures above their transition temperatures exist in a new type of liquid crystalline like phase, which we term a lambda-phase. The observation of the dynamic properties of this new phase indicates the mechanism by which anhydrobiotic organisms maintain the integrity of their membranes upon dehydration.  相似文献   

17.
In the established interpretation of nuclear magnetic resonance (NMR) spectra of phospholipid bilayers in the gel state, the molecules are assumed to perform rotational diffusion about their long axis. Here we present an alternative model of the molecular mobility in this phase, which considers the positions of the lipid molecules in the two-dimensional bilayer lattice as fixed within the NMR timescale. Instead we assume an intramolecular two-site hopping of the hydrocarbon chains about their long axis. It is shown that deuterium NMR spectra of chain-labeled compounds are very sensitive to the precise angle of this flip-flop motion near 90°, so that the diversity of these gel-phase spectra is easily explained by slight variations of this angle. In addition, it is argued that the axial symmetry of 13C spectra of carbonyl-labeled phospholipids might also result from this intramolecular mobility.  相似文献   

18.
Unilamellar dioleoylphosphatidylcholine (DOPC) liposomes (250 microM) incorporated 2 mol% of [3H]pristane at 37 degrees C after addition of 50 microM pristane solubilized with beta-cyclodextrin. Conventional solubilization in dimethyl sulphoxide resulted in much lower uptake. Premixing of perdeuterated pristane with DOPC and dipalmitoylphosphatidylcholine (DPPC) prior to the formation of multilamellar liposomes resulted in homogeneous incorporation of up to 5 mol% pristane at 22 degrees C and 50 degrees C, respectively, as observed by 2H-NMR. Lipid order parameters measured by 31P and 2H-NMR remained unchanged after pristane uptake. Pristane induced the transformation of part of the dioleoylphosphatidylethanolamine (DOPE)/DOPC (3:1, mol/mol) liquid crystalline lamellar phase into an inverse hexagonal phase. 5 mol% pristane in DPPC bilayers decreased the midpoint of the main phase transition temperature of DPPC from 41.5 degrees C to 40.9 degrees C. Upon cooling in the temperature range from 41 degrees C to 36 degrees C, pristane was either displaced from the DPPC bilayer or the mode of incorporation changed. These results may aid in defining the mechanisms whereby pristane, an isoprenoid C19-isoalkane, induces plasmacytomagenesis in mice.  相似文献   

19.
Saposin C (Sap C) is known to stimulate the catalytic activity of the lysosomal enzyme glucosylceramidase (GCase) that facilitates the hydrolysis of glucosylceramide to ceramide and glucose. Both Sap C and acidic phospholipids are required for full activity of GCase. In order to better understand this interaction, mixed bilayer samples prepared from dioleoylphosphatidylglycerol (DOPG) and dioleoylphosphatidylserine (DOPS) (5:3 ratio) and Sap C were investigated using (2)H and (31)P solid-state NMR spectroscopy at temperatures ranging from 25 to 50 degrees C at pH 4.7. The Sap C concentrations used to carry out these experiments were 0 mol%, 1 mol% and 3 mol% with respect to the phospholipids. The molecular order parameters (S(CD)) were calculated from the dePaked (2)H solid-state NMR spectra of Distearoyl-d70-phosphatidylglycerol (DSPG-d70) incorporated with DOPG and DOPS binary mixed bilayers. The S(CD) profiles indicate that the addition of Sap C to the negatively charged phospholipids is concentration dependent. S(CD) profiles of 1 mol% of the Sap C protein show only a very slight decrease in the acyl chain order. However, the S(CD) profiles of the 3 mol% of Sap C protein indicate that the interaction is predominantly increasing the disorder in the first half of the acyl chain near the head group (C1-C8) indicating that the amino and the carboxyl termini of Sap C are not inserting deep into the DOPG and DOPS mixed bilayers. The (31)P solid-state NMR spectra show that the chemical shift anisotropy (CSA) for both phospholipids decrease and the spectral broadening increases upon addition of Sap C to the mixed bilayers. The data indicate that Sap C interacts similarly with the head groups of both acidic phospholipids and that Sap C has no preference to DOPS over DOPG. Moreover, our solid-state NMR spectroscopic data agree with the structural model previously proposed in the literature [X. Qi, G.A. Grabowski, Differential membrane interactions of saposins A and C. Implication for the functional specificity, J. Biol. Chem. 276 (2001) 27010-27017] [1].  相似文献   

20.
Time-resolved fluorescence and Fourier transform infrared spectroscopies were used to investigate the lateral organization of lipids in compositionally uniform and fully equilibrated 1-palmitoyl-2-oleoyl-phosphatidylcholine/cholesterol (POPC/CHOL) liposomes prepared by a recently devised low-temperature trapping method. Independent fluorescence decay lifetime and rotational dynamics parameters of diphenylhexatriene (DPH) chain-labeled phosphatidylcholine (DPH-PC) in these liposomes were recovered from the time-resolved fluorescence measurements as a function of cholesterol molar fraction (X(CHOL)) at 23 degrees C. The results indicate significantly greater lifetime heterogeneity, shorter average lifetime, rotational correlation time, and lower order parameter of the DPH moiety at X(CHOL) approximately 0.40 and 0.50 as compared to the adjacent cholesterol concentrations. Less prominent changes were also detected at, for example, X(CHOL) approximately 0.20 and 0.33. These X(CHOL)'s coincide with the "critical" X(CHOL)'s predicted by the previously proposed superlattice (SL) model, thus indicating that POPC and cholesterol molecules tend to form SL domains where the components tend to be regularly distributed. The data also support another prediction of the SL model, namely that lateral packing defects coexist with the ordered SL domains. It appears that unfavorable interaction of the DPH-moiety of DPH-PC with cholesterol results in a preferential partition of DPH-PC to the defect regions. Fourier transform infrared analysis of the native lipid O=P=O, C=O, and C-H vibrational bands of POPC/CHOL liposomes in the absence of DPH-PC revealed an increase in the conformational order of the acyl chains and a decrease in the conformational order (or increased hydration) of the interfacial and headgroup regions at or close to the predicted critical X(CHOL)'s. This provides additional but probe-independent evidence for SL domain formations in the POPC/CHOL bilayers. We propose that the defect regions surrounding the putative SL domains could play an important role in modulating the activity of various membrane-associated enzymes, e.g., those regulating the lipid compositions of cell membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号