首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Plant responses to abiotic stresses are coordinated by arrays of growth and developmental programs.Gibberellic acid(CA) and abscisic acid(ABA) play critical roles in the developmental programs and environmental responses,respectively,through complex signaling and metabolism networks.However,crosstalk between the two phytohormones in stress responses remains largely unknown.In this study,we report that CIBBERELLIN-INSENSITIVE DWARF 1(GID1),a soluble receptor for GA,regulates stomatal development and patterning in rice(Oryza sativa L.).The gid1 mutant showed impaired biosynthesis of endogenous ABA under drought stress conditions,but it exhibited enhanced sensitivity to exogenous ABA.Scanning electron microscope and infrared thermal image analysis indicated an increase in the stomatal conductance in the gid1 mutant under drought conditions.Interestingly,the gid1 mutant had increased levels of chlorophyll and carbohydrates under submergence conditions,and showed enhanced reactive oxygen species(ROS)-scavenging ability and submergence tolerance compared with the wild-type.Further analyses suggested that the function of GID1 in submergence responses is partially dependent on ABA,and GA signaling by GID1 is involved in submergence tolerance by modulating carbohydrate consumption.Taken together,these findings suggest GID1 plays distinct roles in stomatal response and submergence tolerance through both the ABA and GA signaling pathways in rice.  相似文献   

4.
M. Sakiyama  H. Shibaoka 《Protoplasma》1990,157(1-3):165-171
Summary The effects of abscisic acid (ABA) on the orientation and cold stability of cortical microtubules (MTs) in epidermal cells of epicotyls of the dwarf pea,Pisum sativum L. cv. Little Marvel, were examined by immunofluorescence microscopy. The effect of ABA on the elongation of epicotyls and on the orientation of cortical MTs was opposite to that of gibberellin A3 (GA3). Treatment with ABA, which reduced the promotion of epicotyl elongation by GA3, eliminated the GA3-induced predominance of transverse MTs and resulted in a predominance of longitudinal MTs. The effect of ABA on the cold stability of cortical MTs was also opposite to that of GA3. ABA increased the cold stability of MTs, while GA3 decreased it. The predominance of longitudinal MTs brought about by ABA may have some relationship to ABA-induced inhibition of the elongation of the epicotyl. ABA may alter membrane proteins to stabilize cortical MTs and induce cold hardiness of plants.Abbreviations ABA abscisic acid - DMSO dimethylsulfoxide - FITC fluorescein isothiocyanate - GA3 gibberellin A3 - MT microtubule - PBS phosphate-buffered saline Dedicated to the memory of Professor Oswald Kiermayer  相似文献   

5.
6.
7.
Stomatal opening and closing are driven by ion fluxes that cause changes in guard cell turgor and volume. This process is, in turn, regulated by environmental and hormonal signals, including light and the phytohormone abscisic acid (ABA). Here, we present genetic evidence that expression of PHO1 in guard cells of Arabidopsis thaliana is required for full stomatal responses to ABA. PHO1 is involved in the export of phosphate into the root xylem vessels and, as a result, the pho1 mutant is characterized by low shoot phosphate levels. In leaves, PHO1 was found expressed in guard cells and up‐regulated following treatment with ABA. The pho1 mutant was unaffected in production of reactive oxygen species following ABA treatment, and in stomatal movements in response to light cues, high extracellular calcium, auxin, and fusicoccin. However, stomatal movements in response to ABA treatment were severely impaired, both in terms of induction of closure and inhibition of opening. Micro‐grafting a pho1 shoot scion onto wild‐type rootstock resulted in plants with normal shoot growth and phosphate content, but failed to restore normal stomatal response to ABA treatment. PHO1 knockdown using RNA interference specifically in guard cells of wild‐type plants caused a reduced stomatal response to ABA. In agreement, specific expression of PHO1 in guard cells of pho1 plants complemented the mutant guard cell phenotype and re‐established ABA sensitivity, although full functional complementation was dependent on shoot phosphate sufficiency. Together, these data reveal an important role for phosphate and the action of PHO1 in the stomatal response to ABA.  相似文献   

8.
9.
10.
Lee SC  Hwang BK 《Planta》2009,229(2):383-391
Biotic signaling molecules including abscisic acid (ABA) are involved in signal transduction pathways that mediate the defense response of plants to environmental stresses. The antimicrobial protein gene CaAMP1, previously isolated from pepper (Capsicum annuum), was strongly induced in pepper leaves exposed to ABA, NaCl, drought, or low temperature. Because transformation is very difficult in pepper, we overexpressed CaAMP1 in Arabidopsis. CaAMP1-overexpressing (OX) transgenic plants exhibited reduced sensitivity to ABA during the seed germination and seedling stages. Overexpression of CaAMP1 conferred enhanced tolerance to high salinity and drought, accompanied by altered expression of the AtRD29A gene, which is correlated with ABA levels and environmental stresses. The transgenic plants were also highly tolerant to osmotic stress caused by high concentrations of mannitol. Together, these results suggest that overexpression of the CaAMP1 transgene modulates salt and drought tolerance in Arabidopsis through ABA-mediated cell signaling. The nucleotide sequence data reported here have been deposited in the GenBank database under the accession number AY548741.  相似文献   

11.
In Arabidopsis cell suspension, hyperosmotic stresses (mannitol and NaCl) were previously shown to activate nine sucrose non-fermenting 1 related protein kinases 2 (SnRK2s) whereas only five of them were also activated by abscisic acid (ABA) treatment. Here, the possible activation by phosphorylation/dephosphorylation of each kinase was investigated by studying their phosphorylation state after osmotic stress, using the Pro-Q Diamond, a specific dye for phosphoproteins. All the activated kinases were phosphorylated after osmotic stress but the induced phosphorylation changes were clearly different depending on the kinase. In addition, the increase of the global phosphorylation level induced by ABA application was lower, suggesting that different mechanisms may be involved in SnRK2 activation by hyperosmolarity and ABA. On the other hand, SnRK2 kinases remain activated by hyperosmotic stress in ABA-deficient and ABA-insensitive mutants, indicating that SnRK2 osmotic activation is independent of ABA. Moreover, using a mutant form of SnRK2s, a specific serine in the activation loop was shown to be phosphorylated after stress treatments and essential for activity and/or activation. Finally, SnRK2 activity was sensitive to staurosporine, whereas SnRK2 activation by hyperosmolarity or ABA was not, indicating that SnRK2 activation by phosphorylation is mediated by an upstream staurosporine-insensitive kinase, in both signalling pathways. All together, these results indicate that different phosphorylation mechanisms and at least three signalling pathways are involved in the activation of SnRK2 proteins in response to osmotic stress and ABA.  相似文献   

12.
Although recent studies have established a significant regulatoryrole for abscisic acid (ABA) and ethylene response factor (ERF)proteins in plant pathogen resistance, it is not clear whetherand how ABA performs this role. Previously, it was reportedthat an ERF protein, TSRF1, activates the expression of GCCbox-containing genes and significantly enhances the resistanceto Ralstonia solanacearum in both tobacco and tomato plants.Here, it is reported that TSRF1-regulated pathogen resistanceis modified by ABA application. TSRF1 activates the expressionof ABA biosynthesis-related genes, resulting in the increaseof ABA biosynthesis, which further stimulates ethylene production.More interestingly, ABA application decreases, while the inhibitorof ABA biosynthesis fluridone increases, the TSRF1-enhancedresistance to R. solanacearum. This observation is further supportedby the finding that ABA and fluridone reversibly modify theability of TSRF1 to bind the ethylene-responsive GCC box, consequentlyaltering the expression of element-controlled genes. These resultstherefore establish that TSRF1-regulated resistance to R. solanacearumcan be modified in tobacco by ABA. Key words: Abscisic acid, ERF protein TSRF1, GCC box-containing genes, Ralstonia solanacearum, tobacco  相似文献   

13.
During cold acclimation of potato plantlets ( Solanum commersonii Dun, PI 458317), there are two transitory increases in free ABA content corresponding to a three-fold increase on the 2nd day and a five-fold increase on the 6th day (Ryu and Li 1993). During this period, plantlets increased in cold hardiness from −5°C (killing temperature, control grown at 22/18°C, day/night) to −10°C by the 7th day of exposure to 4/2°C (day/night). This increase in free ABA was not found when cycloheximide (CHI), an inhibitor of cytoplasmic protein synthesis, was added to the culture medium 6 h before exposure to low temperatures. Plantlets treated with CHI did not acclimate to cold, maintaining a hardiness level (−5°C) similar to that of the 22/18°C-grown plantlets. When the CHI-treated plantlets were exposed to low temperatures for 3 days, transferred to CHI-free culture medium and grown at low temperatures, the plantlets showed a transitory increase in free ABA 2 days later. This increase was followed by the development of cold hardiness (−8°C). Application of CHI to the culture medium after 3 days of cold acclimation, when the first ABA peak and a partial development of cold hardiness (−8°C) had occurred, blocked the second transitory increase in free ABA and resulted in no further development of cold hardiness. These results suggest that de novo synthesis of proteins is required for these transitory increases in free ABA during cold acclimation of potato plantlets.  相似文献   

14.
15.
16.
It has been previously shown that shoot tips of in vitro plantlets of sugar beet (Beta vulgaris L. clone SES1) can be cryopreserved using the encapsulation-dehydration technique (survival rate of 37% after freezing). This article reports the influence of abscisic acid (ABA) and cold acclimation on survival after cryopreservation. When ABA was added to the multiplication medium of the plants, the survival rate of shoot tips after cryopreservation was not increased (45%). After cold acclimation of the plants, their growth pattern differed (plants became apically dominant) and the survival rate of the shoot tips after cryopreservation clearly increased (70% survival and 50% plant regeneration after freezing). This improved protocol was successfully applied to three other clones. Received: 28 October 1996 / Revision received: 28 January 1997 / Accepted: 15 March 1997  相似文献   

17.
18.
BACKGROUND AND AIMS: Drought causes a decline of root hydraulic conductance, which aside from embolisms, is governed ultimately by aquaporins. Multiple factors probably regulate aquaporin expression, abundance and activity in leaf and root tissues during drought; among these are the leaf transpiration rate, leaf water status, abscisic acid (ABA) and soil water content. Here a study is made of how these factors could influence the response of aquaporin to drought. METHODS: Three plasma membrane intrinsic proteins (PIPs) or aquaporins were cloned from Phaseolus vulgaris plants and their expression was analysed after 4 d of water deprivation and also 1 d after re-watering. The effects of ABA and of methotrexate (MTX), an inhibitor of stomatal opening, on gene expression and protein abundance were also analysed. Protein abundance was examined using antibodies against PIP1 and PIP2 aquaporins. At the same time, root hydraulic conductance (L), transpiration rate, leaf water status and ABA tissue concentration were measured. KEY RESULTS: None of the treatments (drought, ABA or MTX) changed the leaf water status or tissue ABA concentration. The three treatments caused a decline in the transpiration rate and raised PVPIP2;1 gene expression and PIP1 protein abundance in the leaves. In the roots, only the drought treatment raised the expression of the three PIP genes examined, while at the same time diminishing PIP2 protein abundance and L. On the other hand, ABA raised both root PIP1 protein abundance and L. CONCLUSIONS: The rise of PvPIP2;1 gene expression and PIP1 protein abundance in the leaves of P. vulgaris plants subjected to drought was correlated with a decline in the transpiration rate. At the same time, the increase in the expression of the three PIP genes examined caused by drought and the decline of PIP2 protein abundance in the root tissues were not correlated with any of the parameters measured.  相似文献   

19.
Two allelic Arabidopsis mutants, leaf wilting 2-1 and leaf wilting 2-2 (lew2-1 and lew2-2 ), were isolated in a screen for plants with altered drought stress responses. The mutants were more tolerant to drought stress as well as to NaCl, mannitol and other osmotic stresses. lew2 mutant plants accumulated more abscisic acid (ABA), proline and soluble sugars than the wild type. The expression of a stress-inducible marker gene RD29A, a proline synthesis-related gene P5CS (pyrroline-5-carboxylate synthase) and an ABA synthesis-related gene SDR1 (alcohol dehydrogenase/reductase) was higher in lew2 than in the wild type. Map-based cloning revealed that the lew2 mutants are new alleles of the AtCesA8/IRX1 gene which encodes a subunit of a cellulose synthesis complex. Our results suggest that cellulose synthesis is important for drought and osmotic stress responses including drought induction of gene expression.  相似文献   

20.
Antifreeze proteins are a class of polypeptides produced by certain animals, plants, fungi and bacteria that permit their survival under the subzero environments. Ammopiptanthus nanus is the unique evergreen broadleaf bush endemic to the Mid-Asia deserts. It survives at the west edge of the Tarim Basin from the disappearance of the ancient Mediterranean in the Tertiary Period. Its distribution region is characterized by the arid climate and extreme temperatures, where the extreme temperatures range from − 30 °C to 40 °C. In the present study, the antifreeze protein gene AnAFP of A. nanus was used to transform Escherichia coli and tobacco, after bioinformatics analysis for its possible function. The transformed E. coli strain expressed the heterologous AnAFP gene under the induction of isopropyl β-D-thiogalactopyranoside, and demonstrated significant enhancement of cold tolerance. The transformed tobacco lines expressed the heterologous AnAFP gene in response to cold stress, and showed a less change of relative electrical conductivity under cold stress, and a less wilting phenotype after 16 h of − 3 °C cold stress and thawing for 1 h than the untransformed wild-type plants. All these results imply the potential value of the AnAFP gene to be used in genetic modification of commercially important crops for improvement of cold tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号