首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
纯化的2型志贺毒素(Shiga toxin2,Stx2)经福尔马林脱毒后免疫BALB/c小鼠制备Stx2单克隆抗体,用体外中和试验对具有中和活性的阳性抗体克隆进行初筛,对所获得的中和抗体的重、轻链同种型及结合特异性进行鉴定,其中和保护作用通过体内、体外中和试验加以验证,最后,中和抗体对Stx2亚型Stx2c和Stx2vha的中和谱用体内中和试验验证.结果显示,12株抗Stx2的阳性抗体克隆中,只有1株具有中和活性,命名为S2C4,其重、轻链同种型为G1/κ,其靶分子为Stx2的A亚单位,与Stx2的B亚单位或Stx1不结合.在体外中和试验中S2C4可有效中和Stx2对Vero细胞的杀伤作用,同样,S2C4可中和致死量的Stx2及其亚型Stx2c和Stx2vha对小鼠的毒性作用.该抗体有望成为治疗产志贺毒素大肠杆菌感染的候选分子.  相似文献   

2.
痢疾志贺氏毒素B亚单位在大肠杆菌中的高效表达   总被引:2,自引:0,他引:2  
本文从痢疾志贺氏Ⅰ型菌W30864的染色体克隆了编码志贺氏毒素(Stx)的基因,表达Stx的基因位于约4.5kb的EcoRl片段内。一系列的生物学试验表明:我们构建的杂种质粒(pMGC001)能产生Stx,产量为亲代株的16倍,克隆株不仅有细胞毒和肠毒作用,而且还有神经毒性。我们又从质粒pMGC001将志贺氏毒素的B亚单位(Stx—B)的基因克隆至表达载体pJLA503,获得了Stx—B在大肠杆菌中的高效表达,Stx—B已被纯化,其特异的多克隆和单克隆抗体也被制备。Westem blot表明它们能与Stx—B进行特异的抗原抗体反应。  相似文献   

3.
从噬菌体表面展示肽库中筛选志贺毒素受体结合抑制剂   总被引:1,自引:0,他引:1  
利用抗体捕获法 ,从表面展示随机肽序列的噬菌体文库中筛选到与志贺毒素B亚基 (StxB)结合 ,并能抑制志贺毒素细胞毒效应的噬菌体克隆 ;依据其中 1个克隆序列 (A12 )合成的肽可以与志贺毒素的受体Gb3竞争结合StxB ,并抑制志贺毒素(Stx)的细胞毒和肠毒活性 ;抑制 5×CD50 剂量的Stx细胞毒效应需 2 2 .7μmol的A12合成肽 .筛选得到的 2个噬菌体克隆 (A3 ,A12 )编码的氨基酸序列不同 ,但能竞争结合StxB ,推测它们形成相同或相似的空间结构 .为志贺毒素抑制剂进一步研究打下基础 ,对其他相关药物的研制亦有参考价值 .  相似文献   

4.
目的从分泌抗肠出血性大肠埃希菌Ⅱ型志贺毒素中和单克隆抗体杂交瘤细胞株S2C4中克隆抗体可变区基因,构建单链抗体(ScFv),进行原核表达,并对其功能进行鉴定。方法从杂交瘤细胞株S2C4中提取总RNA,逆转录成cDNA。在cDNA3’-OH末端添加poly.G。PCR扩增包括5’非翻译区和信号肽序列在内的抗体重、轻链可变区基因VH和VL,PCR产物装入T—A载体测序。根据测序结果,设计引物分别扩增VH和VL编码区,再通过重叠PCR,在VH和VL.编码区基因之间引入连接链,构建Scn基因,并克隆到表达载体pComb3xSS中。重组载体导入E.coliTop10F’进行表达,重组蛋白经纯化后,分别用ELISA和动物保护性实验鉴定其生物学活性。结果VH和VL编码区基因全长分别为396bp和378bp,ScFv基因能在大肠埃希菌中高效表达,表达产物的分子量为34000,用NiSO4亲和层析柱成功纯化。功能性实验表明纯化的重组蛋白可以与Stx2毒素有效结合,能保护动物抵御毒素分子的攻击。结论成功地克隆S2C4单抗可变区基因,并构建、表达其单链抗体ScFv,为下一步进行该抗体人源化奠定实验基础。  相似文献   

5.
目的利用噬菌体随机肽库技术筛选志贺样毒素Ⅱ结合亚单位Stx2B的单抗的识别表位。方法以抗志贺样毒素Ⅱ结合亚单位Stx2B的单克隆抗体筛选噬菌体随机12肽库,挑取阳性克隆测定DNA序列,推导其氨基酸序列并进行同源性分析。通过ELISA鉴定获得的噬菌体短肽与单抗之间的结合特性。结果从噬菌体随机12肽库中筛选出20株可与抗志贺样毒素Ⅱ结合亚单位Stx2B的单抗特异结合的噬菌体克隆,其中多数克隆呈现核心序列WTSRW(Q),该序列与志贺样毒素Ⅱ结合亚单位Stx2B的一级序列具有一定的同源性。结论WTSRW(Q)序列是志贺样毒素Ⅱ结合亚单位Stx2B单抗的识别表位。  相似文献   

6.
以制备的重组志贺毒素B亚单位(StxB)为靶标,利用噬菌体展示亲和淘选技术,经4轮筛选,从随机十二肽库中筛选到与StxB结合的一批噬菌体克隆,对特异结合活性较高的27个噬菌体克隆的表面展示肽进行序列测定,其中A6序列出现16次,A9和A3序列分别出现2次和3次。为评价筛选克隆中和毒素毒性的能力,将展示肽出现频率最高的A6噬菌体克隆,体外与志贺毒素孵育进行动物试验,动物存活率达33.3%,表明毒素的毒性得到部分抑制,A6短肽可能发展成为志贺毒素的拮抗剂。  相似文献   

7.
志贺氏毒素B亚单位的分离纯化及其多克隆抗体的制备   总被引:1,自引:0,他引:1  
从高效表达志贺氏毒素B亚单位(StxB)的工程菌株DH5α/pSU108分离纯化了StxB,并用它制备了多克隆抗体。ELISA试验表明抗StxB抗血清的滴度达1×104。Westernblot结果显示该抗血清能与StxB发生特异反应。这为研究志贺氏毒素B亚单位的免疫保护作用和痢疾志贺氏Ⅰ型菌苗的研制打下了基础  相似文献   

8.
目的:制备抗人突触小体相关蛋白25(SNAP25)的鼠源单克隆抗体。方法:利用大肠杆菌表达SNAP25蛋白,纯化后免疫BALB/c小鼠制备杂交瘤细胞,筛选针对SNAP25的阳性杂交瘤细胞株,鉴定抗体亚型;用杂交瘤细胞株制备腹水单抗,纯化后利用SDS-PAGE检测抗体纯度。结果:表达并纯化得到纯度大于90%的SNAP25蛋白,免疫小鼠后经2轮筛选得到12株阳性杂交瘤细胞株,其中抗体重链包括IgG1、IgG2型,轻链大部分为κ链;选择具有相对较高抗原结合活性的14号杂交瘤细胞株制备腹水,纯化后得到纯度大于90%的抗体。结论:获得1株高纯度的针对SNAP25的鼠源单克隆抗体,为肉毒毒素的检测奠定了基础。  相似文献   

9.
从痢疾志贺氏l型菌W 30 864株中提取染色体DNA,用EcoRI完全酶解,电泳回收3—7 kb的片段,与载体pUC1 9质粒连接重组,用大肠阡菌痢疾样毒素(SLT)基因探针进行筛选,得到了阳性重组子。实验表明志贺氏毒素基因是位于约4.5kb的EcoR1片段上,包含毒素的A亚单位基因和B亚单位基因。在对克隆株的毒性测定中,乘用Hela—S3细胞试验,证明所产生的痢疾毒素县有杀死细胞的能力。此毒素可引起肠积水和充血,可使小鼠肢体麻痹并致死,克隆重组株的痢疾毒素产量是亲本野生株W30 864的16涪。此外,实验中还对克隆株和产生SLT的菌株的毒素产量做了比较。  相似文献   

10.
本文运用实时荧光定量PCR的技术对菌株进行stx1基因、stx2基因、eaeA毒力基因检测;并对stx阳性、eaeA阳性的菌株进行O抗原基因rfbE(O157)、wzx(O26)、wbdI(O111)、ihp1(O145)、wzx(O103)检测。探究了实验室保存的94株非O157:H7大肠杆菌是否存在产志贺毒素菌株(STEC)存在;结果表明94株大肠杆菌中检出3株含有stx基因、12株含有eaeA基因;对stx和eaeA阳性菌株O抗原基因试验,检出2株含有wzx(O26)基;这2株大肠杆菌血清凝集试验结果为阳性。研究结果显示,实时荧光定量PCR技术具有特异性强,灵敏度高等特点,可用于产志贺毒素菌株(STEC)前期筛查。  相似文献   

11.
Shiga toxin (Stx) is one of the most critical factors in the development of hemolytic uremic syndrome and other systemic complications following enterohemorrhagic Escherichia coli (EHEC) infection. Substances neutralizing Stx by interfering with toxin-receptor binding have been explored as therapeutic candidates for EHEC infection. In this study, we examined globotriaosyl (Gb3), galabiosyl (Gb2) and galacto-trehalose, each of which was synthetically conjugated with a polyacrylamide backbone, for Stxneutralizing activity. Galacto-trehalose was designed as a Gb2 mimicking, unnatural Stx-ligand that was expected to show tolerance to enzymatic degradation in vivo. Galacto-trehalose copolymer showed neutralizing activity against Stx-1 but not Stx-2 in a HeLa cell cytotoxicity assay. It was thought that galactotrehalose copolymer could be a lead compound for the treatment of Stx-mediated diseases, although it requires modification to show neutralizing activity to Stx-2. The Gb3 copolymer with high sugar unit density showed stronger neutralizing activity against Stx-2 than those with lower density. However, the density-dependency of the neutralizing activity was less obvious against Stx-1. Intravenous administration of the Gb3 copolymer prevented death in mice lethally infected with Stx-1- and Stx-2-producing E. coli O157:H7. Thus, we demonstrated that the artificial Gb3 copolymer could neutralize Stx-1 and the more clinically relevant Stx-2 in vitro and effectively inhibit Stx toxicity in vivo.  相似文献   

12.
Shiga toxin 2 (Stx2)‐specific mAb‐producing hybridoma clones were generated from mice. Because mice tend to produce small amounts of B subunit (Stx2B)‐specific antibodies at the polyclonal antibody level after immunization via the parenteral route, mice were immunized intranasally with Stx2 toxoids with a mutant heat‐labile enterotoxin as a mucosal adjuvant; 11 different hybridoma clones were obtained in two trials. Six of them were A subunit (Stx2A)‐specific whereas five were Stx2B‐specific antibody‐producing clones. The in vitro neutralization activity of Stx2B‐specific mAbs against Stx2 was greater than that of Stx2A‐specific mAbs on HeLa229 cells. Furthermore, even at low concentrations two of the Stx2B‐specific mAbs (45 and 75D9) completely inhibited receptor binding and showed in vivo neutralization activity against a fivefold median lethal dose of Stx2 in mice. In western blot analysis, these Stx2B‐specific neutralization antibodies did not react to three different mutant forms of Stx2, each amino acid residue of which was associated with receptor binding. Additionally, the nucleotide sequences of the VH and VL regions of clones 45 and 75D9 were determined. Our Stx2B‐specific mAbs may be new candidates for the development of mouse‐human chimeric Stx2‐neutralizing antibodies which have fewer adverse effects than animal antibodies for enterohemorrhagic Escherichia coli infection.  相似文献   

13.

Background

Stx toxin is a member of the AB5 family of bacterial toxins: the active A subunit has N-glycosidase activity against 28S rRNA, resulting in inhibition of protein synthesis in eukaryotic cells, and the pentamer ligand B subunits (StxB) bind to globotria(tetra)osylceramide receptors (Gb3/Gb4) on the cell membrane. Shiga toxin-producing Escherichia coli strains (STEC) may produce Stx1 and/or Stx2 and variants. Strains carrying Stx2 are considered more virulent and related to the majority of outbreaks, besides being usually associated with hemolytic uremic syndrome in humans. The development of tools for the detection and/or neutralization of these toxins is a turning point for early diagnosis and therapeutics. Antibodies are an excellent paradigm for the design of high-affinity, protein-based binding reagents used for these purposes.

Methods and Findings

In this work, we developed two recombinant antibodies; scFv fragments from mouse hybridomas and Fab fragments by phage display technology using a human synthetic antibody library. Both fragments showed high binding affinity to Stx2, and they were able to bind specifically to the GKIEFSKYNEDDTF region of the Stx2 B subunit and to neutralize in vitro the cytotoxicity of the toxin up to 80%. Furthermore, the scFv fragments showed 79% sensitivity and 100% specificity in detecting STEC strains by ELISA.

Conclusion

In this work, we developed and characterized two recombinant antibodies against Stx2, as promising tools to be used in diagnosis or therapeutic approaches against STEC, and for the first time, we showed a human monovalent molecule, produced in bacteria, able to neutralize the cytotoxicity of Stx2 in vitro.  相似文献   

14.
Shiga toxin Stx2e is the major known agent that causes edema disease in newly weaned pigs. This severe disease is characterized by neurological disorders, hemorrhagic lesions, and frequent fatal outcomes. Stx2e consists of an enzymatically active A subunit and five B subunits that bind to a specific glycolipid receptor on host cells. It is evident that antibodies binding to the A subunit or the B subunits of Shiga toxin variants may have the capability to inhibit their cytotoxicity. Here, we report the discovery and characterization of a VHH single domain antibody (nanobody) isolated from a llama phage display library that confers potent neutralizing capacity against Stx2e toxin. We further present the crystal structure of the complex formed between the nanobody (NbStx2e1) and the Stx2e toxoid, determined at 2.8 Å resolution. Structural analysis revealed that for each B subunit of Stx2e, one NbStx2e1 is interacting in a head-to-head orientation and directly competing with the glycolipid receptor binding site on the surface of the B subunit. The neutralizing NbStx2e1 can in the future be used to prevent or treat edema disease.  相似文献   

15.
STEC has emerged as an important group of enteric pathogens worldwide. In this study, rabbit polyclonal Stx1 and Stx2 antisera were raised and employed in the standardization of immunoassays for STEC detection. Using their respective antisera, the limit of detection of the toxin was 35.0 pg for Stx1 and 5.4 pg for Stx2. By immunoblotting, these antisera recognized both toxin subunits. Cross-reactivity was observed in the A subunit, but only Stx2 antiserum was able to neutralize the cytotoxicity of both toxins in the Vero cell assay. Six stx-harboring E. coli isolates were analyzed for their virulence traits. They belonged to different serotypes, including the O48:H7, described for the first time in Brazil. Only three strains harbored eae, and the e-hly gene and hemolytic activity was detected in five strains. Three isolates showed new stx2 variants (stx(2v-ha) and stx(2vb-hb)). The ELISA assay detected all six isolates, including one VCA-negative isolate, while the immunodot assay failed to detect one isolate, which was VCA-positive. In contrast, the colony-immunoblot assay detected only one VCA-positive isolate. Our results demonstrate that among the immunoassays developed in this study, the immunodot, and particularly the ELISA, appear as perspective for STEC detection in developing countries.  相似文献   

16.
Chicken egg yolk immunoglobulin (IgY) against Shiga toxin 2e (Stx2e), a major cause of swine edema disease, was prepared to evaluate its possible clinical applications. The titer of Stx2e‐specific IgY in egg yolk derived from three chickens that had been immunized with an Stx2e toxoid increased 2 weeks after primary immunization and remained high until 90 days after this immunization. Anti‐Stx2e IgY was found to neutralize the toxicity of Stx2e by reacting with its A and B subunits, indicating that IgY is a cost‐effective agent to develop for prophylactic foods or diagnosis kits for edema disease.  相似文献   

17.
Shiga toxin variant type 2d (Stx2d) produced by some strains of Shiga toxin-producing Escherichia coli is composed of an enzymatically active A subunit and a B (binding) pentamer. The cytotoxicity of Stx2d is increased (activated) 10-1000-fold for Vero cells when the toxin is incubated with mucus obtained from the small intestine of mice. In this study we isolated an Stx2d activator and identified it as a mouse elastase with strong homology to human elastase IIIB. Moreover, commercially available porcine pancreatic elastase preparations also activated Stx2d cytotoxicity although with a lower specific activity than isolated mouse elastase. Elastase directly nicked the Stx2d A subunit to A(1) and A(2), an event that did not correlate with activation. However, elastase also reduced the size and changed the isoelectric point of the A(2) peptide, as determined by SDS-polyacrylamide gel electrophoresis and two-dimensional electrophoresis followed by Western immunoblot analysis. This elastase-mediated size and charge shift in the A(2) peptide of Stx2d occurred concurrently with activation of the toxin. Both the reduction in size of the Stx2d A(2) peptide by incubation with elastase as well as the associated activation of Stx2d cytotoxicity were fully inhibited by elastatinal, an elastase-specific inhibitor.  相似文献   

18.
Shiga toxins consist of enzymatically active A and B subunit multimers. The A subunit of shiga-like toxins can be proteolytically cleaved into two parts, A1 and A2, with A1 being responsible for toxic activity. Antibody neutralizing the A1 subunit of shiga toxin may protect against infection of the enterohemorrhagic Escherichia coli (EHEC O157:H7). It was difficult to express the full-length A1 subunit of shiga toxin 2 (stx2A1) in a previous study. We have now analyzed the full-length of stx2A1 using bioinformatics software. The data show that the carboxyl terminal (of ~15 amino-acid residues) has strong hydrophobicity and low antigenicity. We cloned and expressed a truncated fragment of stx2A1 (15 amino-acid residues of the carboxyl terminal being removed), designated stx2a1, which can evoke a humoral immune response. Anti-Stx2a1 antibodies can neutralize the native shiga toxin 2 both in vivo and in vitro, which suggests that Stx2a1 serves as a candidate immunogen for a subunit vaccine that can also be used as the antigen to screen phage anti-shiga toxin antibody libraries. L. Liu and H. Zeng contributed equally to this study.  相似文献   

19.
Monoclonal antibodies (MAb) reactive with the glycoprotein of vesicular stomatitis virus (VSV) serotypes Indiana (VSV-Ind) and New Jersey (VSV-NJ) were used to protect mice against lethal infection. MAb which reacted with a number of distinct epitopes and which could neutralize the virus in vitro could also protect against infection in vivo. MAb which could not neutralize the virus in vitro but which were specific for the glycoprotein of a single serotype were also able to protect mice against lethal VSV challenge. Interestingly, a group of MAb which cross-reacted with the glycoproteins of VSV-Ind and VSV-NJ could passively protect against challenge with either serotype. It was shown that as early as 2 h after infection, neither neutralizing nor nonneutralizing MAb could protect. Nonneutralizing MAb were found to be less effective at in vivo protection than neutralizing MAb. Furthermore, nonneutralizing MAb demonstrated a much lower binding efficiency to intact virions than did neutralizing MAb. These observations, plus the fact that the nonneutralizing MAb could lyse virus-infected cells in the presence of complement, suggested that in vivo protection by these antibodies may involve cell-associated viral determinants. To compare the mechanisms by which neutralizing and nonneutralizing MAb protected in vivo, F(ab')2 fragments were used in protection experiments. Although the F(ab')2 of a neutralizing MAb was still able to protect animals lethal virus challenge, the F(ab')2 of a cross-reactive nonneutralizing MAb was unable to do so. The reactivity of nonneutralizing MAb with virions and the apparent necessity of an intact Fc portion for protection further distinguish these antibodies from those MAb that are able to neutralize VSV solely by binding to the glycoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号