首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asakawa A  Inui A  Ueno N  Fujimiya M  Fujino MA  Kasuga M 《Peptides》1999,20(12):1445-1448
This study was designed to investigate the effects of synthetic mouse pancreatic polypeptide (mPP) on feeding and anxiety in mice. The intracerebroventricular (i.c.v.) injection of mPP (0.003-3 nmol) dose-dependently increased food intake. A significant increase was observed 20 min after i.c.v. injection and continued for 4 h. The intraperitoneal (i.p.) injection of mPP (0.03-30 nmol) dose-dependently decreased food intake. A significant decrease was observed 20 min after i.p. injection and continued for 4 h. In the elevated plus maze test, the i.c.v. injection of mPP (0.003-3 nmol) did not affect anxiety behavior. These results suggest that mPP modulates food intake and the Y4 receptor in the brain may contribute to the regulation of feeding, whereas appearing not to influence anxiety in mice.  相似文献   

2.
Studies have shown a reduction of food intake following peripheral and brain injection of CCK. However, it remains to be established whether endogenous central CCK is involved in the regulation of food intake. We investigated the role of central CCK in the regulation of food intake by pharmacological manipulation of the CCKB (CCK2) receptor system. Intracerebroventricularly (ICV) cannulated male Sprague Dawley rats were fasted for 24 h and received an ICV injection of the CCKB receptor antagonist CI988 at a dose of 10 nmol or 49 nmol or vehicle. Another group received two consecutive ICV injections consisting of the corticotropin-releasing factor (CRF) receptor-1 (CRF1) antagonist, CP376395 (3 nmol) or the CRF2 receptor antagonist, K41498 (2 nmol) alone, or followed by CI988 (49 nmol). Lastly, another group of rats received an intraperitoneal (IP) injection of the dopamine antagonist, flupentixol (∼197 and ∼493 nmol/kg) alone, or followed by CI988 (49 nmol, ICV). Cumulative food intake was assessed for 11 h. Vehicle injected rats showed a robust feeding response. CI988 at 49 nmol reduced food intake by 30% starting at 2 h post injection. CP376395 and K41498 had no effect on food intake. Flupentixol injected IP at a dose of 197 and 493 nmol/kg alone did not modulate food intake whereas the higher dose blocked the CI988-induced reduction of feeding. During the dark phase, CI988 had no effect on food intake in unfasted rats. In summary, CCKB signaling is involved in the regulation of food intake after a fast likely by downstream dopamine signaling.  相似文献   

3.
The anorexigenic effect of cholecystokinin (CCK) is well documented in mammals, but documentation in neonatal chicks is limited. Thus, the present study investigated the mechanism underlying the anorexigenic effect of CCK in neonatal chicks. Intraperitoneal (IP) injection of sulfated CCK(26-33) (CCK8S) significantly decreased food intake in chicks at 60 and 300 nmol/kg. Non-sulfated CCK(26-33) (CCK8) also significantly decreased food intake, but its anorexigenic effect was observed only at the highest dose (300 nmol/kg) and short-lived. However, CCK(30-33) (CCK4) had no effect on food intake. Also, the intracerebroventricular (ICV) injection of CCK8S (0.2 and 1 nmol) significantly decreased food intake in chicks. Similar to IP administration, the anorexigenic effect of CCK8 was weak and CCK4 did not affect food intake. IP and ICV injections of CCK8S caused conditioned aversion and increased plasma corticosterone concentrations, suggesting that their anorexigenic effects might be related to stress and/or malaise. This might be true in ICV-injected CCK8S because co-injection of astressin, a corticotropin-releasing hormone receptor antagonist, tended to attenuate the effect of CCK8S. The present study revealed that N-terminal amino acids and the sulfation of Tyr are important for the anorexigenic effect of CCK8S after IP and ICV administered in chicks. Additionally, the effect of central CCK8S might be related to stress and/or malaise.  相似文献   

4.
Neuropeptide Y (NPY) is one of the most potent stimulants of food intake in many animals. Most of the supporting evidence for the effects of NPY has been gathered in mammalian species using porcine NPY. To investigate the effects of NPY on precocial feeding initiation in chicks, we firstly used chicken NPY (cNPY) to study its role in food intake and spontaneous activities in 3-day-old male chicks. Food intake was monitored at different times after intracerebroventricular (ICV) injection of cNPY (2.5, 5.0 or 10.0 μg/10 μL) and anti-cNPY antibody (anti-cNPY) (1:9000, 1:3000 or 1:1000 in dilution). cNPY given at different doses significantly increased food intake at 30 min, 60 min, 90 min and 120 min after injection. Chicks treated with 5.0 μg/10 μL of cNPY showed a maximal 4.48 fold increase in food intake comparing to the control at 30 min. There is still more than 2 fold increase in food intake at 120 min after injection of cNPY. Food intake was significantly inhibited by a single ICV injection of anti-cNPY diluted to 1:9000 (60% inhibition), 1:3000 (92% inhibition), and 1:1000 (95% inhibition) at 30 min with 1:1000 being the maximally effective concentration. The inhibitory effects of anti-cNPY (diluted to1:9000, 1:3000, 1:1000) at 120 min post ICV injection were 22%, 42% and 46%, respectively. But ICV of anti-cNPY (1:3000 in dilution) did not block the orexigenic effect of 2.5 μg/10 μL of cNPY. ICV injection of different concentrations of cNPY increases locomotor activity in a dose-dependent manner while ICV anti-cNPY greatly decreased the distance moved by each chick compared to control groups. Taken together, our results demonstrated that cNPY has a promoting effect on chick food intake and locomotor activity, and that endogenous cNPY might play a positive role in regulating precocial feeding behavior in newly hatched chicks.  相似文献   

5.
Nociceptin/orphanin FQ (N/OFQ) is an endogenous ligand of a G protein-coupled receptornamed NOP. This neuropeptide has been identified as an orexigenic stimulus in the brain of birds and mammals. The purpose of the present study was to clarify whether blockade or stimulation of nociceptin receptors affects adrenaline-induced feeding behaviour in broilers. In Experiment 1, birds received intracerebroventricular (ICV) injection of Nociceptin (1–13) NH2 (potent NOP receptor agonist, 16 nmol) followed by adrenaline (80 nmol). In Experiment 2, the birds received UFP-101, (NOP receptor antagonist, 10 nmol) prior to injection of adrenaline (80 nmol). Cumulative food and water intake was measured at 2 h post-injection. When administrated alone, adrenaline significantly increased food and water intake. The ICV injection of Nociceptin (1–13) NH2 significantly increased food intake but not water intake. Pre-injection of Nociceptin (1–13) NH2 significantly increased the adrenaline-induced feeding response. The effect of adrenaline on food intake was transiently blocked by microinjection of UFP-101. UFP-101-induced anorexia was accompanied by a transient increase in water intake. The transient dipsogenic effect of UFP-101 suggests a role of endogenous N/OFQ-NOP receptor pathways in the regulation of water intake in chickens, which is food intake-independent. These results also provide further evidence for a reciprocal interaction between adrenergic receptors and N/OFQ on feeding behavior.  相似文献   

6.
Intracerebroventricular (ICV) administration of Neuromedin U (NMU), a hypothalamic neuropeptide, or leptin, an adipostat hormone released from adipose tissue, reduces food intake and increases energy expenditure. Leptin stimulates the release of NMU in vitro, and NMU expression is reduced in models of low or absent leptin. We investigated the role of NMU in mediating leptin-induced satiety. ICV administration of anti-NMU immunoglobulin G (IgG) (5 nmol) to satiated rats significantly increased food intake 4 h after injection, an effect seen for 相似文献   

7.
8.
The present study was designed to examine the role of opioidergic and glutamatergic systems on feeding behavior in neonatal meat-type chicken. In experiment 1, FD3 neonatal broilers ICV injected with (A) saline, (B) DAMGO (µ-opioid receptor agonist, 125 pmol), (C) MK-801 (NMDA glutamate receptors antagonist, 15 nmol) and (D) combination of DAMGO plus MK-801. Experiments 2–5 were similar to experiment 1, except FD3 chicks ICV injected with CNQX (AMPA glutamate receptors antagonist, 390 nmol), AIDA (mGLU1 receptors antagonist, 2 nmol), LY341495 (mGLU2 receptors antagonist, 150 nmol) and UBP1112 (mGLU3 receptors antagonist, 2 nmol) instead of MK-801, respectively. In experiments 6–10, FD3 chicks ICV injected as the same as procedure to the experiments 1–5, except to inject with DPDPE (δ-opioid receptor agonist, 40 nmol) instead of the DAMGO. The experiments 11–15 were similar to the experiments 1–5, except neonatal broilers ICV injected with U-50488H (κ-opioid receptor agonist, 30 nmol) instead of DAMGO. Then the cumulative food intake measured until 120 min post injection. According to the results, ICV injection of DAMGO, significantly decreased food intake (P?<?0.05) while DPDPE and U-50488H increased feeding behavior compared to the control group (P?<?0.05). Co-injection of the DAMGO?+?MK-801 and DAMGO?+?AIDA, significantly decreased DAMGO-induced hypophagia in neonatal chicks (P?<?0.05). Also, co-injection of the DPDPE?+?CNQX significantly amplified DPDPE induced feeding behavior (P?<?0.05). These results suggested interconnection between central opioidergic and glutamatergic systems on feeding behavior mediates via µ- and δ-opioid receptor with NMDA, AMPA and mGLU1 receptors in FD3 neonatal broilers. These findings may shed light on the circuitry underlying interconnection between central opioidergic and glutamatergic systems on feeding behavior.  相似文献   

9.
Central regulatory mechanisms for food intake regulation vary among animals. Evidence from animal studies suggests central opioids and dopamine have prominent role on appetite regulation but their interaction(s) have not been studied in layer-type chicken. Thus, in this study six experiments designed to investigate intracerebroventricular (ICV) administration of SCH23390 (D1 like receptors antagonist), Sulpride (D2 like receptors antagonist), DAMGO (μ-opioid receptors agonist), DPDPE (δ-opioid receptors agonist), U-50488H (κ-opioid receptors agonist) on feeding behavior in 3 h food deprived neonatal layer-type chickens. In experiment 1, chicks ICV injected with control solution, SCH23390 (2.5 nmol), DAMGO (125 pmol) and their combination (SCH23390 + DAMGO). In experiment 2: control solution, SCH23390 (2.5 nmol), DPDPE (δ-opioid receptors agonist, 40 pmol) and SCH23390 + DPDPE were applied to the birds. In experiment 3, injections were control solution, SCH23390 (2.5 nmol), U-50488H (30 nmol) and SCH23390 + U-50488H. In experiments 4–6 were similar to experiments 1–3 except Sulpride (2.5 nmol) applied instead of SCH23390. Then, cumulative food intake was recorded until 120 min after injection. According to the results, ICV injection of DAMGO (125 pmol) significantly decreased food intake but co-injection of DAMGO + SCH23390 diminished DAMGO-induced hypophagia (P < 0.05). Also, SCH23390 was not able to decrease the DPDPE- and U-50488H-induced hyperphagia (P > 0.05). Furthermore, Sulpride had no role on DAMGO, DPDPE and U-50488H-induced food intake (P > 0.05). These results suggest there is an interaction between opioidergic and dopaminergic systems via μ and D1 receptors in appetite regulation in chicken.  相似文献   

10.
Somatostatin is well known as an inhibitor of growth hormone release from the anterior pituitary. Its effects are exerted via 5 subtypes of receptors, which are named SSTR1 through 5. We recently reported that intracerebroventricular (ICV) injection of somatostatin stimulates feeding behavior in chicks. However, the specific receptors which mediate this orexigenic effect have not been identified in chicks. Thus, the purpose of the present study was to identify the receptor subtypes involved in somatostatin-induced feeding using 5 somatostatin analogs. Chicks that received vapreotide and octreotide (less than 3 nmol), which are agonist of SSTR2 and SSTR5, increased their food intake. Additionally, chicks ICV injected with BIM23056 or L-817,818 (SSTR3 and SSTR5 agonists, respectively) also had increased food intake. However, ICV injection of the SSTR4 agonist L-803,087 did not cause an orexigenic effect, suggesting that SSTR4 might not be important in somatostatin-induced feeding behavior. In summary, results from this study may be interpreted as SSTR2, SSTR3 and SSTR5 are related to somatostatin-associated feeding behavior in chicks.  相似文献   

11.
Ghrelin is implicated in growth and feeding regulation in fish. The influence of ghrelin on behavior has not been well studied and the physiological role of des-fatty acid modification of this peptide is unclear. Therefore, the effects of intracerebroventricular (ICV) and intraperitoneal (IP) administration of synthetic n-octanoylated (acyl) goldfish ghrelin and des-n-octanoylated (des-acyl) ghrelin on locomotor and orexigenic activity in the goldfish were examined. ICV administration of acyl ghrelin at doses of 1 and 2 pmol/g body weight (BW) and IP administration at 16 pmol/g BW both induced significant increases in locomotor activity during for 45-60 min after treatment. Cumulative food intake was significantly increased by ICV injection of acyl ghrelin at doses of 1 and 2 pmol/g BW and IP injection at 8 and 16 pmol/g BW during the 60-min post-treatment observation period. In contrast, ICV and IP administration of des-acyl ghrelin produced no changes in locomotor and orexigenic activity. We also analyzed fasting-induced changes in the expression of ghrelin mRNA in the brain and intestine using a real-time PCR method. The level of ghrelin mRNA in the intestine, but not in the brain, obtained from fish fasted for 7 days was significantly higher than that in fish that had been fed normally. These results suggest that, in the goldfish, acyl ghrelin, but not des-acyl ghrelin, stimulates locomotor activity and enhances food intake via central and peripheral pathways.  相似文献   

12.
Apelin is the recently identified endogenous ligand for the G-protein-coupled receptor, APJ. Preproapelin and APJ mRNA are found in hypothalamic regions known to be important in the regulation of food and water intake, and pituitary hormone release. The effects of intracerebroventricular (ICV) administration of pyroglutamylated apelin-13 on food and water intake and pituitary hormone release in rats were investigated. Apelin-13 had little effect on food intake, but dose-dependently increased drinking behaviour and water intake at 1 h. Apelin-13 (10 nmol) increased water intake by up to sixfold compared to saline. Compared to saline control, apelin-13 (10 nmol) significantly increased plasma ACTH and corticosterone and decreased plasma prolactin, LH and FSH at 30 min. In vitro, apelin-13 stimulated the release of CRH and AVP from hypothalamic explants, but had no effect on NPY release. These results suggest that apelin may play an important role in the hypothalamic regulation of water intake and endocrine axes.  相似文献   

13.

Background

We study the role of gonadectomy on the response to unavoidable stress and the role of testosterone replacement on gonadectomy in the male Naval Medical Research Institute mice (30±5 g) were studied. For this purpose, the hormonal and metabolic changes were investigated.

Methods

In the experimental group, the gonads were surgically removed, and a cannula was inserted into the left lateral ventricle. For acute and chronic stress induction, animals were placed in the communication box for 30 min for one day and four consecutive days, respectively. The animals received different doses of intraventricular (ICV) testosterone (0.01, 0.05, 0.1 μg/mouse) 5 minutes or intraperitoneal (IP) testosterone (0.05, 0.01, 0.1 mg/kg) 30 minutes before the stress induction.

Results

The results showed that acute and chronic stress increases plasma cortisol concentration. IP testosterone injections of testosterone did not decrease cortisol concentrations in response to acute stress, whereas ICV injections did reduce cortisol concentrations. The stress reduced anorexia time, while the administration of testosterone increased anorexia time. In addition, acute stress reduced food intake in the gonadectomized mice. IP testosterone at 0.01 and 0.05 mg/kg increased food intake. Additionally, stress in gonadectomized mice reduced water intake, while the IP injection of testosterone in chronic stress further reduced water intake. Also, stress reduced the animals’ brain/adrenal volumes, while the IP and ICVinjection of testosterone at 0.01 mg/kg inhibited this effect.

Conclusion

The results showed that the IP (0.05, 0.01, 0.1 mg/kg) and ICV (0.01, 0.05, 0.1 μg/mouse) administration of testosterone in the gonadectomized mice can modulate hormonal and metabolic changes induced by stress.
  相似文献   

14.
The information emerging from the studies demonstrates adrenergic system and nociceptin/orphanin FQ (N/OFQ) play a crucial role on appetite regulation but there is no information for their interaction. The purpose of this study was to examine the effects of intracerebroventricular (ICV) injection of prazosin (α1 receptor antagonist), yohimbine (α2 receptor antagonist), metoprolol (β1 adrenergic receptor antagonist), ICI 118,551 (β2 adrenergic receptor antagonist) and SR59230R (β3 adrenergic receptor antagonist) on N/OFQ-induced hyperphagia by 3-h food-deprived neonatal broiler chicken. In experiment 1, chicken injected with saline, prazosin (10 nmol), N/OFQ (16 nmol) and co-injection of prazosin + N/OFQ. In experiment 2, ICV injection of saline, yohimbine (13 nmol), N/OFQ (16 nmol) and yohimbine + N/OFQ applied to the birds. In experiment 3, injections were saline, metoprolol (24 nmol), N/OFQ (16 nmol) and metoprolol + N/OFQ. In experiment 4, the birds received ICV injection of saline, ICI 118,551 (5 nmol), (C) N/OFQ (16 nmol) and co-administration of ICI 118,551 + N/OFQ. In experiment 5, chicken injected with saline, SR59230R (20 nmol), N/OFQ (16 nmol) and SR59230R + N/OFQ. Then, cumulative food intake was recorded until 120 min after injection. According to the results, ICV injection of N/OFQ significantly increased food intake (P < 0.001). The effect of N/OFQ significantly amplified by co-injection of N/OFQ + β2 adrenergic receptor antagonist (P < 0.001). Also, administration of β1 or β3 adrenergic receptor antagonist had no effect on N/OFQ-induced hyperphagia (P > 0.05). These results suggest that the effect of N/OFQ on cumulative food intake is mediated via β2 adrenergic receptors in neonatal chicken.  相似文献   

15.
Morley JE  Farr SA  Sell RL  Hileman SM  Banks WA 《Peptides》2011,32(4):776-780
In recent years, there have been a large number of neuropeptides discovered that regulate food intake. Many of these peptides regulate food intake by increasing or decreasing nitric oxide (NO). In the current study, we compared the effect of the food modulators ghrelin, NPY and CCK in NOS KO mice. Satiated homozygous and heterozygous NOS KO mice and their wild type controls were administered ghrelin ICV. Food intake was measured for 2 h post injection. Ghrelin did not increase food intake in the homozygous NOS KO mice compared to vehicle treated NOS KO mice, whereas food intake was increased in the wild type controls compared to vehicle treated wild type controls. NPY was administered ICV and food intake measured for 2 h. Homozygous NOS KO mice showed no increase in food intake after NPY administration, whereas the wild type controls did. In our final study, we administered CCK intraperitoneally to homozygous and heterozygous NOS KO mice and their wild type controls after overnight food deprivation. Food intake was measured for 1 h after injection. CCK inhibited food intake in wild type mice after overnight food deprivation, however, CCK failed to inhibit food intake in the NOS KO mice. The heterozygous mice showed partial food inhibition after the CCK. The current results add further support to the theory that NO is a central mediator in food intake.  相似文献   

16.
In the present study, the acute behavioral and ingestive effects of ICV injections of mammalian orexin-A (ORXA; vehicle, 0.2, 0.6 or 2 nmol) and of orexin-B (ORXB; vehicle, 0.2, 0.6 or 2 nmol), as well as possible long-term effects (through 24 h of continuous intake monitoring after 0.6 nmol of ORXA or ORXB) of these treatments in food/water intake and in blood levels of metabolic fuels (free fatty acids and glucose, after 0.2 or 0.6 nmol of ORXA) were examined in adult male pigeons. Both ORXA and ORXB treatments failed to produce acute (1–3 h) or long-term effects on feeding and drinking behaviors, and did not change blood free fatty acids and glucose 15 and 30 min after treatments, as compared to vehicle-treated animals. However, ORXA (but not ORXB) treatments evoked a dose-related, intense increase in exploratory behaviors, associated to reduced time spent in alert immobility and sleep-typical postures. These data substantiate the lack of orexigenic effects of ORXs in avian species, and suggest that an important role in vigilance control may represent a conserved functional attribute of orexinergic circuits in vertebrates.  相似文献   

17.
We studied the effects of neuropeptide K (NPK), a 36 amino acid residue peptide of the tachykinin family, on latency to onset of feeding and cumulative 1 and 2 h food intake in three experimental paradigms. Intraperitoneal injection of NPK (1.25 and 3.14 nmol) to food-deprived rats delayed the onset of feeding and significantly decreased the cumulative food intake. Intraperitoneal injection of NPK (1.25 and 3.14 nmol) to water-deprived rats produced no effect on subsequent drinking behavior. Similarly, intraperitoneal injection of NPK (3.14 nmol) 15 min before onset of the dark phase (of the light-dark cycle) significantly delayed the occurrence of ingestive behavior and the cumulative food intake was markedly suppressed. Furthermore, administration of NPK intraperitoneally (0.5-3.14 nmol) 15 min before intraventricular (i.c.v.) injection of neuropeptide Y (NPY 0.47 nmol) to satiated rats significantly suppressed NPY-induced feeding and delayed the onset of ingestive behavior. However, when administered centrally prior to NPY injection, NPK delayed the onset of feeding response only. Collectively, these findings show that NPK can acutely and consistently suppress feeding behavior.  相似文献   

18.
Systemic or hindbrain administration of MK-801, a noncompetitive N-methyl-D-aspartate receptor antagonist, increases meal size. To examine whether MK-801 enhances intake by increasing gastric emptying, we administered MK-801 (2.0 microg/3.0 microl) into the fourth ventricle [intracerebroventricular (ICV)] and measured feeding and gastric emptying of 5-ml NaCl or 15% sucrose loads. In a parallel experiment, we examined food intake and gastric emptying following intraperitoneal (IP) injection of MK-801 (100 microg/kg). MK-801, either IP or ICV, increased 30-min sucrose intake compared with control (12.3 +/- 0.7 vs. 9.8 +/- 0.5 and 16.6 +/- 2.0 vs. 10.7 +/- 0.7 ml, for IP and ICV administration, respectively). Also, IP MK-801 increased 5-min gastric emptying of NaCl (4.13 +/- 0.1 ml emptied) and sucrose (3.11 +/- 0.1 ml emptied) compared with control (3.75 +/- 0.2 and 2.28 +/- 0.1 ml emptied for NaCl and sucrose loads, respectively). In contrast, ICV MK-801 did not alter NaCl emptying (3.82 +/- 0.1 ml emptied) compared with control (3.82 +/- 0.3 ml emptied) and actually reduced gastric emptying of sucrose (2.1 +/- 0.2 and 2.94 +/- 0.1 ml emptied, for MK and vehicle, respectively). These data confirm previous results that systemic as well as hindbrain injection of MK-801 increases food intake. However, because ICV MK-801 failed to increase gastric emptying, these results indicate that MK-801 increases food intake through mechanisms independent of altered gastric emptying.  相似文献   

19.
Alpha-melanocyte-stimulating hormone (α-MSH) and its receptors are critical and indispensable for maintaining appropriate feeding behavior and energy homeostasis in both mice and humans. Corticotropin-releasing factor (CRF) is a candidate for mediating the anorexic effect of α-MSH. In the present study, we examined whether CRF and its receptors are involved in the anorexic effect of α-MSH, using CRF-deficient (CRFKO) mice and a CRF receptor antagonist. Intracerebroventricular administration of NDP-MSH, a synthetic α-MSH analogue, suppressed food intake in wild-type (WT) mice. This effect was abolished by pretreatment with a non-selective CRF receptor antagonist, astressin, suggesting that the effect of α-MSH-induced anorexia was mediated by a CRF receptor. In CRFKO mice, administration with NDP-MSH did not affect food intake at an early phase (0–4 h). In addition, CRF mRNA levels in the hypothalamus were significantly increased in NDP-MSH-treated mice. Therefore, our findings, using CRFKO, strongly support evidence that CRF is involved in the acute anorexic effect of α-MSH. On the other hand, NDP-MSH administered to CRFKO mice led to suppressed food intake at the late phase (4–12 h), similar to the effect in WT mice. Further, NDP-MSH similarly reduced food intake during the late phase in all types of mice, including WT, CRFKO, and CRFKO with corticosterone replacement. The results would suggest that α-MSH-induced suppression of food intake at late phase was independent of glucocorticoids and CRF.  相似文献   

20.
The present study was designed to examine the role of opioid receptors on food choice and macronutrient selection in neonatal chicks. In this study, 13 experiments designed, experiments 1–3 for effect of specific opioid receptors on appetite and experiments 4–13 on effect of opioid receptors on food choice and macronutrient selection in meat-type chick. In experiment 1, chicken intracerebroventricular (ICV) injected with 125, 250 and 500 pmol of DAMGO (µ-opioid receptor agonist). Experiment 2 was conducted to investigate the effect of DPDPE (δ-opioid receptor agonist) at doses of 20, 40 and 80 nmol. In experiment 3 ICV injection of the U-50488H (κ-opioid receptor agonist, of 10, 20 and 40 nmol) was done. In experiment 4, birds injected with saline and different diets: standard diet without fat, diet containing nutrient energy 20 % higher than standard, diet containing nutrient energy 20 % lower than standard and standard diet containing fat were offered to them to investigate desire of chicken to diets. Experiments 5–7 were similar to experiment 4, except, birds ICV injected with 125, 250 and 500 pmol of DAMGO. In experiments 8–10 chicken received ICV injection of DPDPE (20, 40 and 80 nmol). The experiments 11–13 was similar to previous experiments which birds injected with different doses of U-50488H (10, 20 and 40 nmol), respectively. Then the cumulative food intake measured until 180-min post injection. According to the results, ICV injection of DAMGO diminished food intake while DPDPE and U-50488H increased appetite (P < 0.05). Despite anorexigenic effect, ICV injection of DAMGO increased birds desire to eat fat containing standard diet compared to the standard diet without fat (P < 0.05). These findings suggest endogenous opioids governing preferences for fat rich foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号