首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adult rats were made bilaterally cryptorchid and studied at intervals of 3, 7, 14 or 21 days to study temporal changes in Leydig cell function. Serum FSH and LH levels were measured and the cross-sectional area of the Leydig cells assessed by morphometry. The function of the Leydig cells was judged by the binding of 125I-labelled hCG to testicular tissue in vitro and the testosterone response of the testis to hCG stimulation in vitro. By 3 days after cryptorchidism, the binding of labelled hCG to testicular tissue was significantly decreased compared to that of controls, but the testes were able to respond to hCG stimulation in vitro. At 7, 14 and 21 days after cryptorchidism, an enhanced testosterone response was observed and the size of the Leydig cells was significantly greater than that of the controls, which indicated increased secretory activity by the cryptorchid testis. Although serum FSH levels were significantly elevated after 3 days of cryptorchidism, serum LH levels did not rise until 7 days, thereby suggesting that the loss of receptors is unlikely to result from down-regulation by LH. The reduced testosterone response of the cryptorchid testis in vivo to low doses of hCG and the enhanced response at high doses are probably related to the reduced blood flow to the cryptorchid testis and the decreased sensitivity of the Leydig cells induced by LH/hCG receptor loss.  相似文献   

2.
Response of the cryptorchid testis to gonadotrophic stimulation was assessed by comparison of the androgen production capability in vivo and in vitro with that of the normal scrotal testis. Serum androgen concentrations in cryptorchid rats were similar to those in normal rats, and the incremental increase 60 min after 50 i.u. hCG (i.v.) was about 7-fold for both groups. Basal and hCG-stimulated androgen production in vitro was higher for abdominal testes (557 and 3286 ng/pair) than for scrotal tests (157 and 504 ng/pair). Specific binding of hCG by testicular homogenates was slightly higher (P < 0.05) for cryptorchid testes when expressed per unit weight, but Scatchard analysis indicated that although hCG binding affinities did not differ (Ka = 2 x 10(10) M-1), hCG binding capacity of cryptorchid testes was only 75 ng, compared to 219 ng for scrotal testes. These data indicate that a discrepancy exists between androgen production in vivo and in vitro by cryptorchid testes and that normal serum androgen concentrations are maintained in the presence of decreased numbers of testicular LH/hCG receptors.  相似文献   

3.
The interaction of 125I-labelled hFSH with primate testicular tissue from 4 species of adult monkeys (Macaca mulatta, M. nemestrina, M. fascicularis and Papio cynocephalus) was investigated. 125I-labelled hFSH binding to a particulate fraction (P1, 40 000 g) of frozen testes was highly specific and saturable. Displacement curves generated using the P1 fraction of testes from the 4 species and 125I-labelled hFSH and unlabelled FSH were very similar. The binding of FSH to the monkey testicular receptor was not species specific because purified FSH from heterologous species such as horse, sheep, pig and rat were very effective in competing with 125I-labelled hFSH for binding. The equine FSH was about 10 times more active than hFSH in this respect. Similarly, 125I-labelled ovine FSH bound as well as labelled hFSH to the testes fractions of all 4 monkey species. In marked contrast to the high binding of 125I-labelled hFSH, binding of 125I-labelled hCG with rhesus monkey testis homogenates and P1 fractions was very low. The FSH receptor in the adult rhesus monkey testis was present in much larger quantity than the LH receptor and was more readily detectable. Our studies show that frozen primate testis can be utilized for investigating testicular-FSH interactions.  相似文献   

4.
The testosterone responses to a single injection of hCG (100 i.u.) in hypophysectomized (hypox.), cryptorchid or sham-operated rats were followed over a 5-day period. In sham-operated rats, hCG induced a biphasic rise in serum testosterone, peaks being observed at 2 and 72 h. Reduced testis weights, elevated FSH and LH levels and reduced serum testosterone levels were found after 4 weeks of cryptorchidism, but hCG stimulation resulted in a normal 2 h peak in serum testosterone. However, the secondary rise at 72 h in cryptorchid rats was significantly lower than sham-operated rats. Reduced testis weight and undetectable serum FSH and LH levels together with decreased testosterone levels were found 4 weeks after hypophysectomy. Serum testosterone levels rose 2 h after hCG in comparison to hypox. controls but this peak was significantly reduced compared with sham-operated rats. The second rise in serum testosterone began on day 2, peaking on day 4 at levels comparable to that seen in sham-operated rats after hCG. The in vitro basal and hCG stimulated secretion of testosterone by cryptorchid testes was greater than that secreted by normal rat testes (518.0 +/- 45.9 and 3337.6 +/- 304.1 pmol per testis per 4 h compared with 223.6 +/- 24.9 and 1312.9 +/- 141.4 pmol per testis per 4 h for normal rat testes). In cryptorchid animals a single injection of 100 i.u. hCG resulted in a pattern of in vitro refractoriness similar to normal rats, lasting from 12 h to 2 days, during which testosterone secretion was reduced to near basal levels. The in vitro basal and hCG-stimulated secretion of testosterone by hypox. rat testes was severely diminished compared with normal rat testes. The temporal pattern of in vitro secretion of testosterone from hypox. rat testes mimicked the in vivo serum testosterone pattern seen in these animals. This study demonstrates important differences in the in vivo and in vitro testosterone response to hCG after testicular damage.  相似文献   

5.
'Interstitial fluid' containing high levels of testosterone (60-250 ng/ml) was recovered from the testes of rats, the amounts increasing with increase in age and testis weight. Injection of 170 i.u. hCG/kg resulted 20 h later in significant increases in interstitial fluid and its testosterone content (300-800 ng/ml). In immature rats this effect of hCG was dose-dependent and time-related and the accumulated fluid contained high levels of potassium and phosphate; levels of sodium, calcium and protein were similar to those in serum. At 20 h after injection of hCG, other testicular changes were (1) increased 'adhesiveness', (2) reduced in-vitro binding of 125I-labelled hCG, and (3) an hCG-induced increase in the testis:blood ratio of hCG in vivo.  相似文献   

6.
Summary In testes of rats from 2 to 60 days of age, we examined the number of Sertoli cells (SC) and Leydig cells (LC) as well as the binding of radioiodinated gonadotropins to frozen sections and homogenates. The number of SC per testis increased only during the first 2 postnatal weeks, whereas that of LC was stable up to days 7–10 and increased thereafter. The uptake of 125I-labelled human follicle-stimulating hormone (125I-FSH) to frozen sections was confined to sex cords or seminiferous tubules, while that of 125I-labelled human choriogonadotropin (125I-hCG) matched the distribution of LC in the interstitium. High affinity receptors for FSH and hCG were found in homogenates at all stages studied. The number of FSH receptors per testis increased steadily, whereas that of hCG receptors was low until days 7–10 and rose afterwards. Thus, SC in rat testis appear to proliferate in the presence of fetal LC during the first 2 postnatal weeks and to differentiate concomitantly with the emergence of the adult LC generation after day 10. The complement of FSH receptors in SC remains constant as they proliferate and increases after day 21 as they differentiate. The hCG receptor number is relatively fixed in each LC generation, being higher in adult compared to fetal LC.  相似文献   

7.
Cryptorchidism surgically induced in 14-day-old rats, was allowed to persist until 35 days when one group was killed to assess testicular function. In a second group the cryptorchid testis was returned to the scrotum surgically (orchidopexy) and subsequently killed at 130 days. A third group remained persistently cryptorchid to 130 days, while in a fourth group two sham operations were performed at 14 and 35 days. At 35 days, cryptorchidism resulted in a significant decline in testis weight due to suppressed spermatogenesis. Sertoli cell function as measured by seminiferous tubule fluid (TF) production after unilateral efferent duct ligation and androgen-binding protein (ABP) production was significantly depressed in the cryptorchid group. Serum follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels were significantly elevated with cryptorchidism but serum testosterone levels were unchanged. Although morphometric measurements showed no change in Leydig cells cross-sectioned area, in vitro human chorionic gonadotropin (hCG)-stimulated testosterone production was significantly increased in the cryptorchid group at higher hCG doses. Similar changes were found in cryptorchid testes at 130 days except that Leydig cell cross-sectional area was now significantly increased. Orchidopexy at 35 days restored spermatogenesis and fertility during test mating was not impaired. TF production, ABP accumulation and serum FSH levels returned to normal following orchidopexy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Rats were made bilaterally cryptorchid at 21 days of age; sham-operated rats were used as controls. At 35 days, the animals were injected i.m. with saline or with 10 IU hCG. Progesterone, 17-hydroxyprogesterone, androstenedione and testosterone were measured in both testes and plasma under basal conditions and 2, 4, 8, 12, 24 and 72 h respectively after injection. The plasma levels and intratesticular contents of the steroids were generally lower in cryptorchid rats. The patterns of the steroid response to hCG were similar in both groups: in the testes and in the plasma, they increased acutely following hCG injection (except testicular androstenedione), then, after 72 h, returned to normal values in the plasma but remained higher than the basal values in the testes. These results suggest that there are no gross abnormalities in the testicular steroidogenic pathways and that the mechanism of action of hCG on the Leydig cells is unaltered in bilaterally cryptorchid immature rats.  相似文献   

9.
J R Wisner  W R Gomes 《Steroids》1978,31(2):189-203
Testicular cholesterol side-chain cleavage enzyme (CSCCE) and delta5-3beta-hydroxysteroid dehydrogenase (delta5-3beta-HSD) activities were assessed 12 hours and 2, 4, 8, 16, and 32 days after surgical induction of bilateral cryptorchidism in adult rats. Within 12 hours after surgery CSCCE activity (expressed as dpm of isocaproic acid-14C formed from cholesterol-26-14C/3 hours/testis) was significantly reduced (P less than 0.01) in cryptorchid testes to approximately 55% of sham-operated control values and remained depressed at less than 50% of control activities 2, 4, 16, and 32 days after surgery. Cryptorchid testis delta5-3beta-HSD activity (measured by a pregnenolone substrate-depletion assay and expressed as mumoles of products/30 minutes/testis) did not differ from controls (P greater than 0.05) 1/2, 2, or 4 days after translocation of testes to the abdominal cavity. By day 8 of cryptorchidism, however, delta5-3beta-HSD activity was reduced to 60% of control values (P less than 0.05) and continued to decline to approximately 30% of controls during the remainder of the experimental period. These observed alterations in enzyme activities suggest an impairment in the ability of cryptorchid rat testes to synthesize androgens and further indicate that testicular CSCCE is more acutely sensitive to the cryptorchid milieu than delta5-3beta-HSD.  相似文献   

10.
Steroid sulfatase (STS) activity was studied in scrotal and abdominal testes from genetically unilateral cryptorchid rats. Specific STS activity was significantly increased in microsomes from abdominal and scrotal testes of the cryptorchid animals as compared to that of control ones. When expressed per gonad, STS activity was only enhanced in the scrotal testis. No difference in the enzyme affinity was observed between descended and undescended testes. Testosterone content was markedly reduced in the abdominal testes. Normal plasma testosterone levels together with elevated LH levels were measured in the cryptorchid rats. The existence of differences in STS expression between descended and undescended testes gives additional support for this enzymatic activity being implicated in testicular function.  相似文献   

11.
The effect of uni- and bilateral cryptorchidism on testicular inhibin and testosterone secretion and their relationships to gonadotropins were studied in rats. Mature Wistar male rats weighing approximately 300 g were made either uni- or bilaterally cryptorchid. Testicular inhibin and testosterone content and plasma levels of LH and FSH were examined 2 weeks later. A similar remarkable decrease in testicular inhibin content was found in uni- and bilaterally cryptorchid testes. On the other hand, the testicular testosterone content was significantly decreased only in unilaterally cryptorchid testis with an inverse increase in the contralateral testis. Plasma testosterone levels were normal and plasma LH and FSH increased significantly in both of the cryptorchid groups. These results showed that cryptorchidism impairs both Sertoli and Leydig cell functions. While testosterone production was compensated by increased LH for 2 weeks, neither inhibin secretion nor storage changed in cryptorchid or contralateral testes during the same period.  相似文献   

12.
Testes from mice aged 3, 15, 25, 30 or 60 days were incubated under basal conditions or in the presence of hCG. One testis from each animal was incubated at 37 degrees C while the contralateral testis was incubated at 32 or 34 degrees C. During development total androgen production in response to hCG (at 32 degrees C) showed a marked increase between 15 and 30 days. The major androgens secreted at this time were testosterone and 5 alpha-androstane-3 alpha,17 beta-diol. There was little change in total androgen production between 30 and 60 days but by 60 days testosterone was the dominant androgen. Both basal and hCG-stimulated androgen production were temperature sensitive. These effects were most pronounced at 30 and 60 days with androgen production significantly inhibited at 37 degrees C. To examine the role of testicular descent in regulating steroidogenesis animals were rendered unilaterally cryptorchid at 19 days of age. At 25 days, when descent is normally completed in the mouse, there was no significant difference in steroidogenesis between scrotal and abdominal testes. By 30 days, however, the steroidogenic potential of the abdominal testis was significantly lower than that of the scrotal testis. These results show that testicular steroidogenesis is sensitive to temperature changes around the time of testicular descent, although descent itself is not required to achieve an adult level of steroidogenesis. The results also show, however, that testicular descent is required to maintain the adult level of steroidogenesis.  相似文献   

13.
BACKGROUND: Hormonal treatment of cryptorchidism has been used since the 30s, but controversies persist on its efficacy. It is also unclear whether there are differences with the use of different hormonal trials. Aims: To evaluate the efficacy of four hormonal treatments on testicular descent in a homogeneous group of cryptorchid boys. PATIENTS: 155 patients (age 10-48 months) with unilateral inguinal palpable testis were studied. Methods: The patients were subdivided into four groups according to hormonal treatment: group 1 = hCG [500 IU/week (if the chronological age was <2 years) or 1,000 IU/week (if the chronological age was >2 years) for 6 weeks]; group 2 = hCG + hMG (hCG as in group 1 + hMG 75 IU/week for 6 weeks); group 3 = GnRH (1,200 microg/daily for 28 days); group 4 = GnRH + hCG (1,200 microg/daily for 28 days + 1,500 IU/week for 3 weeks, respectively). The results were evaluated at the end of the treatment period and 6 months later to exclude temporarily positive results. RESULTS: At the end of the hormonal therapy, scrotal testicular descent was present in 30 of 155 boys (success rate 19.3%). Seven testes relapsed during follow-up (23.3%). The long-term success rate was 14.8% (23/155 testes). No significant differences were observed in success rates as well as in relapse rates among the four groups. CONCLUSIONS: Hormonal therapy induced permanent testicular descent in a minority of young cryptorchid boys with inguinal palpable testis. Similar results were obtained with four different trials.  相似文献   

14.
The properties of hCG binding to LH receptors of the neonatal (5-day-old) rat testis were analysed and compared with those of the adult testis. The equilibrium association constants (Ka) of hCG-binding were similar at both ages, 2-4 X 10(10) M-1. In contrast, kinetic binding studies revealed that the association and dissociation rate constants of hCG binding were more rapid in the neonatal testis. Likewise, it was observed that the progression from loose (easily dissociable) to tight (non-dissociable) binding was less complete in the young than in the adult testis. Autoradiography of 125I-labelled hCG binding to interstitial cell suspensions at the two ages showed that the gonadotrophin binding per Leydig cell was about 50% lower in the neonatal testis. Conversely, since the surface area of adult Leydig cells was about 4-fold larger, the receptor density appeared to be higher in the neonatal Leydig cells. The rapid recovery of LH receptors after hCG stimulation, typical of the neonatal cells, was due to rapid replenishment of binding in the cells initially occupied by the injected hormone, rather than to an hCG-induced increase of Leydig cell number. Finally, in-vivo experiments with cycloheximide revealed that the rapid recovery of LH receptors was dependent on protein synthesis. These differences in the kinetics of neonatal testicular LH receptor turnover may be involved in the unique functional features of the fetal-neonatal growth phase of rat testicular Leydig cells.  相似文献   

15.
Anti-Müllerian hormone (AMH) induces regression of Müllerian ducts during male fetal development; in the human male, it is expressed in Sertoli cells during fetal development (and through puberty). The objective was to characterize expression of AMH in the fetal, neonatal, prepubertal, and adult equine testis, as well as in equine cryptorchid testes, in select testicular neoplasms, and in intersex gonads, based upon immunohistochemistry (IHC). Testes were removed from equine fetuses at 5.5, 10, and 11 months of gestation, at 12 months of age, and from adult stallions. In addition, cryptorchid testes, testis tumors (teratomas, seminomas, Sertoli cell tumors), and male intersex gonads were examined by IHC for expression of AMH using a goat polyclonal primary antibody (alpha-AMH) directed against a C-terminal peptide antigen from human AMH. Immunolabeling with alpha-AMH was localized to Sertoli cells within the developing seminiferous tubules of fetal, neonatal and prepubertal equine testes, with no expression detected in Sertoli cells from normal adult equine testes. Furthermore, expression was detected in cryptorchid testes (in animals up to 3-4 years of age) and in Sertoli cell tumors and male intersex gonads. In conclusion, AMH was strongly expressed by Sertoli cells in fetal, neonatal and prepubertal equine testes, but not in normal adult testes. That AMH was expressed in cryptorchid testes may provide a useful biomarker for detection of cryptorchid testes, as well as for immunohistochemical characterization of testicular tumors and intersex gonads in the horse.  相似文献   

16.
Cryptorchidism was associated with increased responsiveness of the isoproterenol-sensitive adenylate cyclase in membrane particles from rat testis. Abdominal testes from uni- and bilaterally cryptorchid rats showed the same activities. The change in isoproterenol-responsive adenylate cyclase was independent of the age at which the animals were made cryptorchid. The isoproterenol response was maximal 3-4 weeks after the rats were made cryptorchid. By 2-3 months after orchidopexy the isoproterenol response in the rat testis had decreased to normal control values.  相似文献   

17.
A simple and reliable method was developed to determine the neutral cholesteryl ester hydrolase (CEH) activity in rat testes, using cholesteryl-[1-14C]-oleate as substrate. The activity was due to a soluble enzyme present in the cytoplasm of predominantly Sertoli cells, which could be shown after depleting the testes of Leydig cells with ethane dimethyl sulphonate. This treatment also revealed that the loss of CEH activity in abdominal testes of experimentally cryptorchid rats takes place in the Sertoli cells. In prepubertal rats made unilaterally cryptorchid at birth, the CEH activity was significantly higher in the abdominal than in the scrotal testes at 16 days of age. This is earlier than any previously described biochemical change and coincides with, or may even precede, the earliest morphological changes which are accumulation of lipid droplets in the Sertoli cells. The testicular CEH activity then decreased to 30 days of age in the abdominal testes, whereas the activity increased in the contralateral, scrotal testes. When adult rats were made unilaterally cryptorchid for 24 h, the CEH activity decreased rapidly in the abdominal testes. These results suggest that a derangement in cholesteryl ester metabolism is an early event in the pathogenesis of testicular degeneration in cryptorchidism.  相似文献   

18.
Adult rats with normal or X-irradiated testes were used in an experiment to test the possible existence of a chalone in the testis. On the 11th day following irradiation, i.e. as the type A spermatogonia proliferated actively to restore the partially destroyed spermatogonial population, the animals with irradiated testes were subdivided into three groups. Rats of the first group were injected intraperitoneally with a saline extract of normal adult rat testes. Animals of the second group were injected with an equal amount of physiological saline while the rats of the third group received equivalent injections of a saline liver extract. Two additional groups of rats with non-irradiated testes, injected with the testicular extract or saline solution, served as controls. Following the last injection all animals were injected with 3H-thymidine and sacrificed. From each animal one testis was used to determine the specific radioactivity of its DNA, the other testis was processed for radioautography. The testicular extract produced a significant decrease in uptake of radioactivity by the irradiated testes. There was no difference in the radioactivity uptake by the testes of non-irradiated rats. Correspondingly the labeling index of type A spermatogonia was significantly lower in animals of the first group than in the other two groups of animals with irradiated testes. However, there was no difference in the labeling indices of Intermediate and type B spermatogonia or of preleptotene spermatocytes in the animals receiving the extracts or the saline solution. In animals with non-irradiated testes there was no difference in the labeling indices of type A or other types of spermatogonia or of spermatocytes. These data were taken to indicate that a saline extract of normal adult testes contains a substance that can inhibit specifically the proliferation of type A spermatogonia during the repair phase of the spermatogonial population following irradiation. This substance was tentatively considered as a spermatogonial chalone.  相似文献   

19.
Infant (5-day-old) male rats were treated with hormonal regimens to alter their exposure to gonadotropins, prolactin (Prl), and estrogen, and the response of testicular endocrine functions was measured. Human chorionic gonadotropin (hCG) or a potent gonadotropin-releasing hormone agonist analog (GnRH-A) resulted in a short-lived decrease of testicular receptors (R) for luteinizing hormone (LH), but no deleterious effects were found on testicular capacity to produce testosterone (T), which is a typical response of the adult testis. Only GnRH-A, through probable direct testicular action, induced a relative blockade of C21 steroid side-chain cleavage that was observed in vitro upon hCG stimulation. Human chorionic gonadotropin treatment, but not GnRH-A treatment, increased testicular Prl-R. GnRH antagonist analog (GnRH-Ant) treatment did not affect testicular LH-R, but decreased Prl-R and testicular T production. Decrease of serum Prl by bromocriptine had no effect on testicular LH-R or Prl-R, but slightly decreased T production in vitro. Ovine Prl increased binding sites for LH/hCG. The postnatal rats were insensitive to negative effects of diethylstilbestrol when monitored by testis weight, T, and LH-R. In conclusion, the responses to changes in the hormonal environment differed greatly between infant and adult testes. Mainly positive effects of elevated gonadotropin and Prl levels were seen on infant rat Leydig cell functions. Likewise, decreased tropic hormone levels, and exposure to estrogen, were ineffective in bringing about the inhibitory actions seen in the adult.  相似文献   

20.
Adult male rats were injected with different doses of hCG, or with 2.5 micrograms ovine LH subcutaneously, and other rats were mated with oestrous females. The animals were examined 4 h after treatments. Treatment with hCG resulted in a dose-dependent increase in leucocyte concentration in testicular blood vessels and in the number of blood vessels which could be labelled with intravenously injected carbon particles. Carbon leakage was not observed in control testes. Treatment with a low dose of ovine LH or inducing an endogenous LH peak by mating also resulted in leucocyte accumulation and vascular leakage of carbon in the testis. The magnitude of the response was considerably lower than after high doses of hCG. The physiological relevance of the discrete response observed after physiological LH stimulation is unknown but LH-induced changes in testicular microcirculation could be of interest for the understanding of the physiology and pathophysiology of the testis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号