首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The demand for feathers as a nest-building material was investigated by placing feather patches in woodland and garden sites between January and June 1993 and March and April 1994. The first of 18 species to breed in the area which use feathers in their nests was the Long-tailed Tit. The feather requirements of this species are known to far exceed that of the other species. Long-tailed Tits were shown to forage actively for feathers up to 115 m from the nest but possibly not as far as 200 m.

Patches generally remained untouched during the 24-h exposure but when detected were typically heavily exploited. Complete disappearance of feather patches occurred sporadically right to the end of the study.

The woodland contained only a low standing crop of moulted feathers and it is concluded that natural feather patches resulting from kills are important for birds who need this nest material. It is suggested that Long-tailed Tits may be attempting to avoid competition for feathers by nesting early.  相似文献   

2.
Juveniles of several passerine species renew all of their fresh juvenile feathers immediately after fledging (complete post‐juvenile moult), in contrast to the majority, which perform a partial post‐juvenile moult. To understand the adaptive roles of this phenomenon we compared the quality of juvenile plumage in species that perform a complete post‐juvenile moult with that of species which perform a partial post‐juvenile moult; we similarly compared juveniles and adults in each of these groups. The quality of feathers was measured by mass of primaries, colour, and length. In species which perform a complete post‐juvenile moult the plumage quality of second‐year individuals, in their first breeding season, is similar to the plumage quality of adults, unlike those species that perform a partial post‐juvenile moult. In species which perform complete post‐juvenile moult, the quality of the feathers grown in the nest is lower than the quality of adult post‐breeding feathers. In contrast, in species which perform partial post‐juvenile moult the quality of the feathers grown in the nest is similar to that of adult post‐breeding feathers. We found that a complete post‐juvenile moult strategy is much more common 1) in residents and short‐distance migrants than in long‐distance migrants, 2) in southern latitudes, 3) in species with medium body mass and 4) in omnivores and granivores. Our results indicate two adaptive roles of the complete post‐juvenile moult strategy: 1) achieving high quality plumage in the first year which may increase individual survival probability and fitness and 2) allocating fewer resources to nestling plumage and more to nestling development, which enables the nestlings to leave the nest earlier, thus reducing the probability of encountering nest predators. We suggest that the complete post‐juvenile moult, immediately after fledging, is an optimal strategy in favourable habitats and under low time constraints, as in some tropical ecosystems.  相似文献   

3.
Mercury (Hg) is a well‐known global contaminant that persists in the environment. The organic form, methylmercury (MeHg) has been shown to adversely affect bird immune function, foraging behavior, navigation, and flight ability, which individually or together could reduce migration performance, and ultimately survival. Nestlings grow feathers at their natal site, and in North America many adult passerines undergo a complete feather molt prior to autumn migration at or near their breeding location. Body Hg is redistributed into growing feathers, and remains stable following feather growth. As flight feathers are retained in most species over the non‐breeding season until molt in the following summer, tail feathers can be used at other times and places as indicators of Hg body burden on the breeding grounds. In five migratory passerine species, we compared Hg concentrations in tail feathers that were grown prior to autumn migration and retained until the following spring. We predicted that we would observe a shift in the distribution of species‐specific feather Hg values towards lower means in the spring if Hg reduced survival over the migration and winter periods. We found reductions in mean feather Hg between autumn and spring in two long‐distance migratory insectivores (blackpoll warbler Setophaga striata; American redstart Setophaga ruticilla). Most significantly, spring‐returning blackpoll warblers, a species that undertakes long non‐stop flights to South America during autumn migration, had nearly 50 percent lower Hg concentrations than those that departed in the autumn. Our finding suggests that Hg exposure on the breeding areas could have a carry‐over effect to influence migration success and survival of insectivorous songbirds that undergo extensive and demanding migratory journeys. More investigation is needed to fully understand the relationships among Hg exposure, migration performance, and survival of songbirds.  相似文献   

4.
The "condition-specific competition hypothesis" proposes that coexistence of 2 species is possible when spatial or temporal variations in environmental conditions exist and each species responds differently to those conditions. The distribution of different species of feather mites on their hosts is known to be affected by intrinsic host factors such as structure of feathers and friction among feathers during flight, but there is also evidence that external factors such as humidity and temperature can affect mite distribution. Some feather mites have the capacity to move through the plumage rather rapidly, and within-host variation in intensity of sunlight could be one of the cues involved in these active displacements. We analyzed both the within- and between-feather spatial distribution of 2 mite species, Trouessartia bifurcata and Dolichodectes edwardsi , that coexist in flight feathers of the moustached warbler Acrocephalus melanopogon. A complex spatial segregation between the 2 species was observed at 3 spatial levels, i.e., "feather surfaces," "between feathers," and "within feathers." Despite certain overlapping distribution among feathers, T. bifurcata dominated proximal and medial regions on dorsal faces, while D. edwardsi preferred disto-ventral feather areas. An experiment to check the behavioral response of T. bifurcata to sunlight showed that mites responded to light exposure by approaching the feather bases and even leaving its dorsal face. Spatial heterogeneity across the 3 analyzed levels, together with response to light and other particular species adaptations, may have played a role in the coexistence and segregation of feather mites competing for space and food in passerine birds.  相似文献   

5.
Insulation is an essential component of nest structure that helps provide incubation requirements for birds. Many species of waterfowl breed in high latitudes where rapid heat loss can necessitate a high energetic input from parents and use down feathers to line their nests. Common eider Somateria mollissima nest down has exceptional insulating properties but the microstructural mechanisms behind the feather properties have not been thoroughly examined. Here, we hypothesized that insulating properties of nest down are correlated to down feather (plumule) microstructure. We tested the thermal efficiency (fill power) and cohesion of plumules from nests of two Icelandic colonies of wild common eiders and compared them to properties of plumules of wild greylag goose Anser anser. We then used electron microscopy to examine the morphological basis of feather insulating properties. We found that greylag goose down has higher fill power (i.e. traps more air) but much lower cohesion (i.e. less prone to stick together) compared to common eider down. These differences were related to interspecific variation in feather microstructure. Down cohesion increased with the number of barbule microstructures (prongs) that create strong points of contact among feathers. Eider down feathers also had longer barbules than greylag goose down feathers, likely increasing their air‐trapping capacity. Feather properties of these two species might reflect the demands of their contrasting evolutionary history. In greylag goose, a temperate, terrestrial species, plumule microstructure may optimize heat trapping. In common eiders, a diving duck that nests in arctic and subarctic waters, plumule structure may have evolved to maximize cohesion over thermal insulation, which would both reduce buoyancy during their foraging dives and enable nest down to withstand strong arctic winds.  相似文献   

6.
SHORT NOTES     
Laycock, H. T. 1982. Moulting and plumage changes in the Thickbilled Weaver. Ostrich 53:91-101.

Thickoilled Weavers were studied in captivity, in the wild and as museum specimens. Moulting follows the normal passerine pattern, but a difference from related species is that there is no post-fledging moult of the flight feathers. Methods were devised for identifying isolated feathers and for aging trapped birds, this being easier in the male. After the breeding season the male undergoes eclipse, which has apparently not been described before, and loses his white forehead patches. Adult males and females moult about the same time, but second-year males moult six or eight weeks earlier. The duration of post-nuptial moult is about four months and is timed to occur during the season when there is maximum food availability. The use of a “moult score” is avoided in this account and the timing of feather loss substituted as having more real meaning.  相似文献   

7.
The distribution of feather mites (Astigmata) along the wing of passerine birds could change dramatically within minutes because of the rapid movement of mites between feathers. However, no rigorous study has answered how fine-tuned is the pattern of distribution of feather mites at a given time. Here we present a multiscale study of the distribution of feather mites on the wing of non-moulting blackcaps Sylvia atricapilla in a short time period and at a single locality. We found that the number and distribution of mites differed among birds, but it was extremely similar between the wings of each bird. Moreover, mites consistently avoided the first secondary feather, despite that it is placed at the centre of the feathers most used by them. Thus, our results suggest that feather mites do precise, feather-level decisions on where to live, contradicting the current view that mites perform "mass", or "blind" movements across wing feathers. Moreover, our findings indicate that "rare" distributions are not spurious data or sampling errors, but each distribution of mites on the wing of each bird is the outcome of the particular conditions operating on each ambient-bird-feather mite system at a given time. This study indicates that we need to focus on the distribution of feather mites at the level of the individual bird and at the feather level to improve our understanding of the spatial ecology of mites on the wings of birds.  相似文献   

8.
The distribution of feather mites (Astigmata) along the wing of passerine birds could change dramatically within minutes because of the rapid movement of mites between feathers. However, no rigorous study has answered how fine‐tuned is the pattern of distribution of feather mites at a given time. Here we present a multiscale study of the distribution of feather mites on the wing of non‐moulting blackcaps Sylvia atricapilla in a short time period and at a single locality. We found that the number and distribution of mites differed among birds, but it was extremely similar between the wings of each bird. Moreover, mites consistently avoided the first secondary feather, despite that it is placed at the centre of the feathers most used by them. Thus, our results suggest that feather mites do precise, feather‐level decisions on where to live, contradicting the current view that mites perform “mass”, or “blind” movements across wing feathers. Moreover, our findings indicate that “rare” distributions are not spurious data or sampling errors, but each distribution of mites on the wing of each bird is the outcome of the particular conditions operating on each ambient‐bird‐feather mite system at a given time. This study indicates that we need to focus on the distribution of feather mites at the level of the individual bird and at the feather level to improve our understanding of the spatial ecology of mites on the wings of birds.  相似文献   

9.
There is increasing evidence of adaptive preferential investment during moult in those feather tracts that are more advantageous for fitness. In this study, we assessed whether, after the manual removal of two functionally different flight feathers (one primary and one rectrix), birds from two common passerine species (Eurasian Blackcap Sylvia atricapilla and European Robin Erithacus rubecula) favoured the regeneration of primary (supposedly the most functionally important feathers) over rectrix feathers. Our results did not show differences between replaced primary and rectrix feathers in their final length, but demonstrated that the gap left by the loss of the primary feather was filled earlier, suggesting that a rapid repair of the most essential feather tracts is also evolutionarily advantageous during the adventitious replacement of plumage.  相似文献   

10.
Many bird species use feathers as lining material, and its functionality has traditionally been linked to nest insulation. However, nest lining feathers may also influence nest detection by predators, differentially affect reproductive investment of mates in a post‐mating sexual selection process, and affect the bacterial community of the nest environment. Most of these functions of nest lining feathers could affect hatching success, but the effect might vary depending on feather coloration (i.e. pigmented versus white feathers). This would be the case if coloration is related to: (1) thermoregulatory properties; (2) attractiveness of feathers in the nest for mates; (3) eggshell bacterial density. All of these hypothetical scenarios predict that feathers of different colours would differentially affect the hatching success of birds, and that birds should preferentially choose the most beneficial feather colour for lining their nests. Results from two different experiments performed with a population of Danish barn swallow, Hirundo rustica, were in accordance with these predictions. First, H. rustica preferentially selected white experimentally offered feathers for lining their nests. Second, the experimental manipulation of the feather colour composition of nests of H. rustica had a significant effect on hatching success. Experimental nests with more white feathers added at the beginning of incubation had a lower probability of hatching failures, suggesting differential beneficial effects of lining nests with feathers of this colour. We discuss the relative importance of hypothetical functional scenarios that predicted the detected associations, including those related to sexual selection or to the community of microorganisms associated with feathers of different colours. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 67–74.  相似文献   

11.
12.
Here we investigate the change in feather quality during partial post‐juvenile and complete post‐breeding moult in great tit Parus major by measuring the change in the number of fault bars and feather holes on wing and tail feathers. Feathers grown during ontogeny usually are of lower quality than feathers grown following subsequent moults at independence. This is reflected by higher number of fault bars and feather holes on juveniles compared to adults. Fault bars are significantly more common on tail and proximal wing feathers than on the distal remiges, indicating a mechanism of adaptive allocation of stress induced abnormalities during ontogeny into the aerodynamically less important flight feathers. On the contrary, feather holes produced probably by chewing lice have a more uniform distribution on wing and tail feathers, which may reflect the inability of birds to control their distribution, or the weak natural selection imposed by them. The adaptive value of the differential allocation of fault bar between groups of feathers seems to be supported by the significantly higher recapture probability of those juvenile great tits which have fewer fault bars at fledging on the aerodynamically most important primaries, but not on other groups of flight feathers. The selection imposed by feather holes seems to be smaller, since except for the positive association between hatching date, brood size and the number of feather holes at fledging, great tits' survival was not affected by the number of feather holes. During post‐juvenile moult, the intensity of fault bars drops significantly through the replacement of tail feathers and tertials, resulting in disproportional reduction of the total number of fault bars on flight feathers related to the number of feathers replaced. The reduction in the number of fault bars during post‐juvenile moult associated with their adaptive allocation to proximal wing feathers and rectrices may explain the evolution of partial post‐juvenile moult in the great tit, since the quality of flight feathers can be increased significantly at a relatively small cost. Our results may explain the widespread phenomenon of partial post‐juvenile moult of flight feathers among Palearctic passerines. During the next complete post‐breeding moult, the total number of fault bars on flight feathers has remained unchanged, indicating the effectiveness of partial post‐juvenile moult in reducing the number of adaptively allocated fault bars. The number of feather holes has also decreased on groups of feathers replaced during partial post‐juvenile moult, but the reduction is proportional with the number of feathers moulted. In line with this observation, the number of feather holes is further reduced during post‐breeding moult on primaries and secondaries, resulting in an increase in feather quality of adult great tits.  相似文献   

13.
Feather eating has been associated with feather pecking, which continues to pose economic and welfare problems in egg production. Knowledge on feather eating is limited and studies of feather eating in commercial flocks of laying hens have not been performed previously. Therefore, the main objective was to investigate feather eating and its association with plumage damage and floor feather characteristics in commercial flocks of layers in barn and organic production systems. The study was performed in 13 flocks of barn layers and 17 flocks of organic layers. Each flock was visited at around 32 and 62 weeks of age. During both visits, the plumage condition was assessed and the density of floor feathers recorded. In week 62, droppings and floor feathers were collected. Droppings were examined for presence of feather content, whereas length, downiness and pecking damage were recorded for each floor feather. In week 62, a higher prevalence of hens with poor plumage condition was found in barn (22.2%) compared with organic production systems (7.4%; P<0.001), but the prevalence of droppings with feather content did not differ between the two production systems (8.5% in barn v. 4.3% in organic; P=0.99). Our hypothesis about a positive correlation between feather eating and plumage damage was not supported as no correlation was found between the prevalence of poor plumage condition and the prevalence of droppings with feather content. However, the prevalence of pecking damaged floor feathers was positively correlated both with prevalence of droppings with feather content (P<0.05) and poor plumage condition (P<0.01), indicating a possible association between feather eating and feather pecking. In conclusion, it was confirmed that feather eating occurs on-farm, but feather eating was only found to be positively correlated to the number of floor feathers with pecking damage and not as expected to the prevalence of plumage damage. More research is needed into the sources from where feathers are selected for ingestion, that is, whether they are picked from the floor litter, plucked directly from other hens or dislodged during preening of own feathers.  相似文献   

14.
换羽是鸟类为保证持续生存的重要过程。换羽策略与鸟类进化及对环境的适应紧密相关,研究鸟类换羽特征,对于了解鸟类的分类、系统发育、进化历史及其对环境的适应性等方面都有重要意义。2007年3月至9月,在广东肇庆市江溪村对黄腹山鹪莺(Prinia flaviventris)和纯色山鹪莺(P.inornata)的春季换羽进行了研究。通过设置雾网捕捉2种山鹪莺,对捕捉到的成体进行体重及身体量度的测量;对飞羽及尾羽进行标记:初级飞羽以翅尖的第一枚羽毛标记为"P1",次级飞羽以翅中部最外一枚标记为"S1",向内依次递增标记;尾羽以中央两根最长尾羽为"T1",分别向两侧递增标记为"T2~T5"。采用单因素方差分析(One way ANOVA)对不同月份山鹪莺的体重值进行差异性检验,对体重与月份进行Pearson相关分析,对尾羽的长度和宽度进行Pearson偏相关分析(控制变量:体长)。研究结果表明:1)两种山鹪莺换羽期为3至5月,持续时间约为60 d;2)两种山鹪莺春季换羽仅更换尾羽,换羽模式均为离心型,即中央一对尾羽最先开始替换,然后向两侧由内到外逐次更替;3)两种山鹪莺的尾羽长度和宽度同步变化,但绝大部分山鹪莺非繁殖期尾羽长度与繁殖期尾羽长度之比大于非繁殖期尾羽宽度与繁殖期尾羽宽度之比,即繁殖期尾羽相对较宽;4)两种山鹪莺换羽期间体重大致呈现下降趋势,但变化不显著(P0.05)。推测两种山鹪莺通过增加食物的摄入来抵抗换羽期和繁殖期重叠而导致的能量消耗,这可能与该地区丰富的食物资源有关,并在一定程度上体现了两种山鹪莺换羽策略对环境的适应性。  相似文献   

15.
The greenery and arthropod nest composition has been studied in a population of Bonelli's eagle Hieraaetus fasciatus in south-east Spain, relating them to the plant availability within territories and breeding success of pairs. Greenery was invariably from trees and shrubs, with pine and oak species accounting for 78% of the nest composition in weight. All eagle pairs with Pinus pinaster availability in territories actively selected it for nest greenery. This pine species is characterized by a high level of aromatic compounds, particularly β -pinene, highly repellent for insects. The amount of pine greenery in the nest was correlated with a lower presence of ectoparasites in that nest (blow fly larvae, Protocalliphora) , and higher breeding success of pairs. We discuss whether a coevolutionary process between parasites and their hosts has guided a particular nesting strategy of the eagles to improve their breeding success.  相似文献   

16.
Birds often lose feathers during predation attempts, and thisability has evolved as a means of escape. Because predatorsare more likely to grab feathers on the rump and the back thanon the ventral side of an escaping bird, we predicted that theformer feathers would have evolved to be relatively looselyattached as an antipredator strategy in species that frequentlydie from predation. We estimated the force required to removefeathers from the rump, back, and breast by pulling featherswith a spring balance from a range of European bird speciesin an attempt to investigate ecological factors associated withease of feather loss during predation attempts. The force requiredto loosen a feather from the rump was less than that requiredto loosen a feather from back, which in turn was less than thatrequired to loosen a feather from the breast. The relative forceneeded to loosen rump feathers compared with feathers from theback and the breast was smaller for prey species preferred bythe most common predator of small passerine birds, the sparrowhawkAccipiter nisus. Likewise, the relative force was also smallerin species with a high frequency of complete tail loss amongfree-living birds, which we used as an index of the frequencyof failed predation attempts. The relative force required toremove feathers from the rump was smaller in species with ahigh frequency of fear screams, another measure of the relativeimportance of predation as a cause of death. Feather loss requiredparticularly little force among solitarily breeding bird speciesthat suffer the highest degree of predation. Antipredator defensein terms of force required to remove feathers from the rumpwas larger in species with a strong antiparasite defense interms of T-cell–mediated immune response. These findingsare consistent with the hypothesis that different defenses areantagonistic and that they are traded off against each other.  相似文献   

17.
The amount of food resources available to upper‐level consumers can show marked variations in time and space, potentially resulting in food limitation. The availability of food resources during reproduction is a key factor modulating variation in reproductive success and life‐history tradeoffs, including patterns of resource allocation to reproduction versus self‐maintenance, ultimately impacting on population dynamics. Food provisioning experiments constitute a popular approach to assess the importance of food limitation for vertebrate reproduction. In this study of a mesopredatory avian species, the lesser kestrel Falco naumanni, we provided extra food to breeding individuals from egg laying to early nestling rearing. Extra food did not significantly affect adult body condition or oxidative status. However, it increased the allocation of resources to flight feathers moult and induced females to lay heavier eggs. Concomitantly, it alleviated the costs of laying heavier eggs for females in poor body condition, and reduced their chances of nest desertion (implying complete reproductive failure). Extra food provisioning improved early nestling growth (body mass and feather development). Moreover, extra food significantly reduced the negative effects of ectoparasites on nestling body mass, while fostering forearm (a flight apparatus trait) growth among highly parasitized nestlings. Our results indicate that lesser kestrels invested the extra food mainly to improve current reproduction, suggesting that population growth in this species can be limited by food availability during the breeding season. In addition, extra food provisioning reduced the costs of the moult–breeding overlap and affected early growth tradeoffs by mitigating detrimental ectoparasite effects on growth and enhancing development of the flight apparatus with high levels of parasitism. Importantly, our findings suggest that maternal condition is a major trait modulating the benefits of extra food to reproduction, whereby such benefits mostly accrue to low‐quality females with poor body condition.  相似文献   

18.
Reed passerine birds are strict habitat specialists inhabiting reedbed habitats. In Europe, many of these species are threatened due to loss and degradation of natural reedbeds. Another important factor that can negatively affect the abundance of reed passerines is commercial reed harvesting. Previous studies have shown negative impacts of large-scale winter reed cutting on passerine breeding assemblages and arthropod communities. The effect of reed cutting on a small scale, however, has not been studied experimentally to date. The aim of this study was to investigate whether and how small-scale, mosaic reed cutting influences prey abundance and nest predation rate of reed passerines. In June, after the reed had reached maturity, we conducted nest predation experiments with artificial nests and arthropod sampling using pan traps in cut reed patches, adjacent uncut reed patches and unmanaged reedbed. We found no differences in the risk of egg predation between three types of reedbeds. In contrast, the abundance of arthropods in cut and adjacent uncut reed patches was significantly higher than that in unmanaged reedbed. We assume this was caused by habitat heterogeneity, small size of cut patches and their rapid recolonization by arthropods from adjacent uncut patches. Our results suggest that in contrast to large-scale reed cutting, small-scale, mosaic reed cutting has no negative effect on nest survival and food abundance of reed passerine birds. However, given that we performed all experiments in June, i.e., when the reed was mature, our findings cannot be generalized to whole breeding period of all reed passerine birds. Therefore, temporal variation in nest predation rate and arthropod abundance in managed and unmanaged reedbeds during the entire breeding season should be examined in future studies.  相似文献   

19.
Migratory birds have less time for moulting than sedentary birds, which may force them to produce their feathers faster at the expense of reducing feather quality. However, the effects of migration on the trade-off between moult speed and plumage quality remain to be studied in natural populations. We analysed the relationship between growth rate and quality of individual feathers, taking advantage of natural variation between migratory and sedentary populations of blackcaps Sylvia atricapilla . As predicted by life-history theory, individual blackcaps showed variable individual quality, which was revealed by positive correlations between feather growth rate and feather mass within populations. However, migrants grew up their feathers faster, producing lighter feathers than sedentary blackcaps. These results support the idea that feather growth rate and feather quality are traded against each other in blackcaps. Such a trade-off is apparently caused by different selection associated to migratory and sedentary life styles, which opens new insights into the diversification of moult patterns in birds.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 98–105.  相似文献   

20.
Understanding the causes of variation in feather colour in free-living migratory birds has been challenging owing to our inability to track individuals during the moulting period when colours are acquired. Using stable-hydrogen isotopes to estimate moulting locality, we show that the carotenoid-based yellow-orange colour of American redstart (Setophaga ruticilla) tail feathers sampled on the wintering grounds in Central America and the Caribbean is related to the location where feathers were grown the previous season across North America. Males that moulted at southerly latitudes were more likely to grow yellowish feathers compared with males that moulted more orange-red feathers further north. Independent samples obtained on both the breeding and the wintering grounds showed that red chroma-an index of carotenoid content-was not related to the mean daily feather growth rate, suggesting that condition during moult did not influence feather colour. Thus, our results support the hypothesis that feather colour is influenced by ecological conditions at the locations where the birds moulted. We suggest that these colour signals may be influenced by geographical variation in diet related to the availability of carotenoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号