首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Metabolic and body temperature (Tb) responses of star-nosed moles (Condylura cristata) exposed to air temperatures ranging from 0 to 33 degrees C were investigated. The thermoneutral zone of this semi-aquatic mole extended from 24.5 to 33 degrees C, over which its basal rate of metabolism averaged 2.25 ml O2 g-1 h-1 (45.16 J g-1 h-1). This rate of metabolism is higher than predicted for terrestrial forms, and substantially higher than for other moles examined to date. Minimum thermal conductance was nearly identical to that predicted for similar-sized eutherians and may represent a compromise between the need to dissipate heat while digging and foraging in subterranean burrows, and the need to conserve heat and avoid hypothermia during exposure to cold. C. cristata precisely regulated Tb (mean +/- SE = 37.7 +/- 0.05 degrees C) over the entire range of test temperatures. Over three separate 24-h periods, Tb of a radio-implanted mole varied from 36.6 to 38.8 degrees C, and generally tracked level of activity. No obvious circadian variation in Tb and activity was apparent, although cyclic 2-4 h intervals of activity punctuated by periods of inactivity lasting 3-5 h were routinely observed. We suggest that the elevated basal metabolic rate and relatively high Tb of star-nosed moles may reflect the semi-aquatic habits of this unique talpid.  相似文献   

4.
Eudusbabekia diphyllis n. sp. and Eudusbabekia diaemis n. sp., parasitic on Diphylla ecaudata and Diaemus youngi, respectively, are described, and measurements for Eudusbabekia arganoi (Vomero) are presented. The vampire bats are here treated as representatives of the family Phyllostomatidae on the basis of the occurrence of these mites on them. These 3 mites are closest to those parasitic on bats of the genus Phyllostomus, among all the known mites of the genus Eudusbabekia, suggesting a phylogenetic affinity between vampire bats and Phyllostomus. Asymmetry of different levels of legs I is observed in adults of E. arganoi and E. diaemis, whereas E. diphyllis bears bilaterally symmetrical legs I. From this, the phylogenetic line, E. diphyllis-E. arganoi-E. diaemis, is proposed on the premise that asymmetry of any part of the external body has been fostered and preserved in the parasites.  相似文献   

5.
The humerus of fossorial moles has a highly derived anatomy, reflecting the ecological specialization of these animals for digging. It is short and broad, with enlarged muscle attachment sites and pronounced articulations compared to non‐fossorial sister taxa and other mammals. Both condyles are rotated in opposite directions, resulting in a torsion which is unique among eutherian mammals. The development of this exceptional bone was studied in embryonic stages of the fossorial Iberian mole (Talpa occidentalis) from mesenchymal condensation to incipient ossification based on histological serial sections using 3D reconstruction methods. For comparison, embryonic stages of the semi‐fossorial Japanese shrew mole (Urotrichus talpoides) as well as a sister taxon of moles, the terrestrial North American least shrew (Cryptotis parva), were studied. Results show that the humerus of Talpa already shows its derived anatomy with broadened muscle attachment sites and distinct articulations at early cartilaginous stages, when ossification has just started in the mid‐diaphyseal region. The torsion takes place simultaneously with the medial rotation of the forelimbs. The supracondylar foramen is closed in all studied Talpa embryos, but patent in Cryptotis and Urotrichus. This is an example of developmental penetrance, suggesting that variation of adult elements can be found at early stages as well.  相似文献   

6.
7.
8.
The clade Talpidae consists of specialized fossorial forms, shrew‐like moles and semi‐aquatic desmans. As with all higher jawed vertebrates, different functional, phylogenetic and developmental constraints act on different parts of dentary influencing its shape. In order to determine whether morphological variation in the dentary was unified or dispersed into an integrated complex of structural–functional components, a morphometric analysis of the mole dentary was undertaken. The dentary was subdivided into component parts – horizonal ramus; coronoid, condylar, angular processes of the ascending ramus – and outline‐based geometric morphometric methods used to quantify, compare and contrast modes of shape variation within the clade. These were successful in revealing subtle differences and aspects of shape important in distinguishing between mole genera. Closer examination of shape variation within the two fully fossorial mole clades (Talpini and Scalopini) revealed several similarities in ascending ramus shapes between genera from each clade. For example, the broad, truncated appearance of the coronoid process in the talpine genera Talpa and Parascalops was shared with the scalopine genus Scapanus. Also, the more slender, hook‐shaped coronoid process of Euroscaptor and Parascaptor (Talpini) closely resembles that of Scalopus (Scalopini). Interestingly, subspecies (one from each clade) more closely resembled genera other than their own in coronoid process shape. Important distinctions in horizontal ramus shape were found to exist between the two clades, such as the extent of curvature of the ventral margin and relative depth of the horizontal ramus. Results show shape variation in this region is correlated with dental formulae and the relative sizes of the teeth. The taxonomically important dentition differences characteristic of mammals are also reflected in the horizontal ramus results. Moreover, these results suggest size may be affecting shape and the extent of variation in, for example, the coronoid and condylar processes between the semi‐aquatic moles Desmana and Galemys. It is likely that the effects of morphological integration seen at this level of analysis – covariation between shapes of dentary components – may exist because interacting traits are evolving together. Horizontal ramus and coronoid process shape, for example, are similar across Scapanus and Parascalops, but both these shapes have diverged in Scalopus. © 2008 Trustees of the Natural History Museum (London). Journal compilation © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 153 , 187–211.  相似文献   

9.
10.
11.
12.
13.
14.
The phenomenon of the parallel evolution is considered with the example of the myobiid mites (Acari: Prostigmata: Myobiidae) and the jerboas (Rodentia: Dipodoidea). According to recent phylogenetic studies of the superfamily Dipodoidea it is separated into 4 family: Allactagidae, Dipodidae, Zapodidae and Sminthidae (Shenbrot e. a., 1995). The myobiid mites of the subenus Dipodomyobia (11 species) of the genus Cryptomyobia are known as specific parasites associated with jerboas of the families Dipodidae and Allactagidae. One more species (Radfordia ewingi) considered as incertae sedis species within the genus Radfordia is found on the jerboas of the family Zapodidae. The myobiid mites are apparently absent on the members of the family Sminthidae. The reconstruction of phylogeny of the myobiid subgenus Dipodomyobia was carried out by the cladistic method (software PAUP 3.0 s). The analysis was based on 13 morphological characters. At the first step of analysis 42 parsimonious trees have been obtained. The strict consensus tree displays one distinct cluster, which incorporates mites of the allactaga species of group restricted to the jerboa family Allactagidae, and several plesions, species of which are usually refferred to as dipi species group and associated with the family Dipodidae (fig. 1). At the second step of analysis, two characters, which appeared as homoplasies at the first step of analysis were excluded, and one new characters (structure of male genital shield) was additionally included. Single cladogram obtained displays two general clusters and one plesion. The first cluster comprises the allactaga species group (parasites of Allactagidae). The second cluster incorporates the dipi species group, the parasites of subfamilies Dipodinae and Paradipodinae of Dipodidae). The plesion is represented by one species Cryptomyobia baranovae being a specific parasite of Salpingotus crassicauda (Cardiocraninae, Dipodidae). There is the high level congruence between the pattern of myobiid cladogram and jerboas phylogeny proposed by Shenbrot (1992) (fig. 2). The position of one species C. paradipi (the parasite of Paradipus ctenodactylus, single representative of subfam. Paradipodinae) does not fit to this phylogenetic system of the jerboas. This mite species belongs to the claster dipi. All others myobiid species of this group are the parasites of the subfamily Dipodinae. In the cladogram of jerboas, the subfam. Paradipodinae is a sister group of Cardiocraninae, but not of Dipodinae, as it is suggested by the parasitological data. If sinapomorphies in the node Paradipodinae--Cardiocraninae are not correct (as Shenbrot admitted), there would be a complete congruence between the phylogenetic pattern of myobiid and of jerboas. The general phylogeny of Dipodoidea based on citogenetical data was proposed by Vorontsov e. a. (1971). 3 families only were recognized within Dipodoidea: Zapodidae, Sminthidae and Dipodidae. The latter family included 3 subfamilies: Dipodinae, Cardiocraninae and Allactaginae. The version of the jerboa phylogeny proposed in the present paper based on parasitological data corresponds in general lines to the hypotesis of Vorontsov e. a. (1971). The myobiid mites are absent on Sminthidae, they are represented by one species incertae sedis on Zapodidae, and by the subgenus Dipodomyobia on others jerboas (Dipodidae sensu Vorontsov e. a.). According to the parasitological data, the subfamilies Dipodinae and Allactaginae are the sister groups, because the myobiid mites of the subgenus Dipodomyobia parazitise on the jerboas of these taxa only. The subfamily Paradipodinae (sensu Shenbrot) is a sister group for Dipodinae, as far as species C. paradipi is the sister species to other members of the dipi group. The subfamily Cardiocraninae is a sister group for the node Dipodinae-Paradipodinae and also should be included to Dipodidae, because the aberrant species C. baranovae is obviously related to the dipi species group.  相似文献   

15.
16.
17.
A survey of the nasal mites from Guatemalan cloud forest birds is reported. Seventy-eight birds, representing 10 families and 18 species, were examined. Prevalance of infection was 24%. Two new species are described: Sternostoma darlingi from Mitrephanes phaeocercus (Tyrannidae) and S. pencei from Empidonax flavescens (Tyrannidae). New host records are reported for S. pirangae from Chlorospingus ophthalmicus (Thraupidae), S. hutsoni from Catharus dryas (Turdidae), Ptilonyssus sairae from Chlorospingus opthalmicus (Thraupidae) and Myioborus miniatus (Parulidae), P. euroturdi from Catharus dryas (Turdidae), P. tyrannus from Empidonax flavescens and Mitrephanes phaeocercus (both Tyrannidae), and Tinaminyssus ixoreus from Catharus dryas (Turdidae). The subspecies Ptilonyssus euroturdi mimicola Fain and Hyland is synonymized with the nominate subspecies. Data are presented to suggest that the Rhinonyssidae may be a polyphyletic assemblage.  相似文献   

18.
Haplo-diploidy was found to be regular with eight species of phytoseiid mites occurring in Madagascar. The chromosome number in all species was n=4. A variation was found with respect to centromere position.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号