首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S Xu  J Gu  T Rhodes  B Belknap  G Rosenbaum  G Offer  H White    LC Yu 《Biophysical journal》1999,77(5):2665-2676
The thick filaments of mammalian and avian skeletal muscle fibers are disordered at low temperature, but become increasingly ordered into an helical structure as the temperature is raised. Wray and colleagues (Schlichting, I., and J. Wray. 1986. J. Muscle Res. Cell Motil. 7:79; Wray, J., R. S. Goody, and K. Holmes. 1986. Adv. Exp. Med. Biol. 226:49-59) interpreted the transition as reflecting a coupling between nucleotide state and global conformation with M.ATP (disordered) being favored at 0 degrees C and M.ADP.P(i) (ordered) at 20 degrees C. However, hitherto this has been limited to a qualitative correlation and the biochemical state of the myosin heads required to obtain the helical array has not been unequivocally identified. In the present study we have critically tested whether the helical arrangement of the myosin heads requires the M.ADP.P(i) state. X-ray diffraction patterns were recorded from skinned rabbit psoas muscle fiber bundles stretched to non-overlap to avoid complications due to interaction with actin. The effect of temperature on the intensities of the myosin-based layer lines and on the phosphate burst of myosin hydrolyzing ATP in solution were examined under closely matched conditions. The results showed that the fraction of myosin mass in the helix closely followed that of the fraction of myosin in the M.ADP.P(i) state. Similar results were found by using a series of nucleoside triphosphates, including CTP and GTP. In addition, fibers treated by N-phenylmaleimide (Barnett, V. A., A. Ehrlich, and M. Schoenberg. 1992. Biophys. J. 61:358-367) so that the myosin was exclusively in the M.ATP state revealed no helical order. Diffraction patterns from muscle fibers in nucleotide-free and in ADP-containing solutions did not show helical structure. All these confirmed that in the presence of nucleotides, the M.NDP.P(i) state is required for helical order. We also found that the spacing of the third meridional reflection of the thick filament is linked to the helical order. The spacing in the ordered M.NDP.P(i) state is 143.4 A, but in the disordered state, it is 144. 2 A. This may be explained by the different interference functions for the myosin heads and the thick filament backbone.  相似文献   

2.
Myosin heads are helically ordered on the thick filament surface in relaxed muscle. In mammalian and avian filaments this helical arrangement is dependent on temperature and it has been suggested that helical order is related to ATP hydrolysis by the heads. To test this hypothesis, we have used electron microscopy and image analysis to study the ability and temperature dependence of analogs of ATP and ADP.Pi to induce helical order in tarantula thick filaments. ATP or analogs were added to rigor myofibrils or purified thick filaments at 22 degrees C and 4 degrees C and the samples negatively stained. The ADP.Pi analogs ADP.AlF4 and ADP.Vi, and the ATP analogs ADP.BeFx, AMPPNP and ATPgammaNH2, all induced helical order in tarantula thick filaments, independent of temperature. In the absence of nucleotide, or in the presence of ADP or the ATP analog, ATPgammaS, there was no helical ordering. According to crystallographic and tryptophan fluorescence studies, all of these analogs, except ATPgammaS and ADP, induce the "closed" conformation of the myosin head (in which the gamma phosphate pocket is closed). We suggest that helical order requires the closed conformation of the myosin head but is not dependent on the hydrolysis of ATP.  相似文献   

3.
The degree of helical order of the thick filament of mammalian skeletal muscle is highly dependent on temperature and the nature of the ligand. Previously, we showed that there was a close correlation between the conformation of the myosin heads on the surface of the thick filaments and the extent of their helical order. Helical order required the heads to be in the closed conformation. In addition, we showed that, with the same ligand bound at the active site, three conformations of myosin coexisted in equilibrium. Hitherto, however, there was no detectable helical order as measured by x-ray diffraction under the temperatures studied for myosin with MgADP and the nucleotide-free myosin, raising the possibility that the concept of multiple conformations has limited validity. In this study, blebbistatin was used to stabilize the closed conformation of myosin. The degree of helical order is substantially improved with MgATP at low temperature or with MgADP or in the absence of nucleotide. The thermodynamic parameters of the disorder↔order transition and the characteristics of the ordered array were not significantly altered by binding blebbistatin. The simplest explanation is that the binding of blebbistatin increases the proportion of myosin in the closed conformation from being negligible to substantial. These results provide further evidence for the coexistence of multiple conformations of myosin under a wide range of conditions and for the closed conformation being directly coupled to helical order.  相似文献   

4.
Myosin molecules in the relaxed thick filaments of striated muscle have a helical arrangement in which the heads of each molecule interact with each other, forming the interacting-heads motif (IHM). In relaxed mammalian skeletal muscle, this helical ordering occurs only at temperatures >20°C and is disrupted when temperature is decreased. Recent x-ray diffraction studies of live tarantula skeletal muscle have suggested that the two myosin heads of the IHM (blocked heads [BHs] and free heads [FHs]) have very different roles and dynamics during contraction. Here, we explore temperature-induced changes in the BHs and FHs in relaxed tarantula skeletal muscle. We find a change with decreasing temperature that is similar to that in mammals, while increasing temperature induces a different behavior in the heads. At 22.5°C, the BHs and FHs containing ADP.Pi are fully helically organized, but they become progressively disordered as temperature is lowered or raised. Our interpretation suggests that at low temperature, while the BHs remain ordered the FHs become disordered due to transition of the heads to a straight conformation containing Mg.ATP. Above 27.5°C, the nucleotide remains as ADP.Pi, but while BHs remain ordered, half of the FHs become progressively disordered, released semipermanently at a midway distance to the thin filaments while the remaining FHs are docked as swaying heads. We propose a thermosensing mechanism for tarantula skeletal muscle to explain these changes. Our results suggest that tarantula skeletal muscle thick filaments, in addition to having a superrelaxation–based ATP energy-saving mechanism in the range of 8.5–40°C, also exhibit energy saving at lower temperatures (<22.5°C), similar to the proposed refractory state in mammals.  相似文献   

5.
Blebbistatin is a small-molecule, high-affinity, noncompetitive inhibitor of myosin II. We have used negative staining electron microscopy to study the effects of blebbistatin on the organization of the myosin heads on muscle thick filaments. Loss of ADP and Pi from the heads causes thick filaments to lose their helical ordering. In the presence of 100 μM blebbistatin, disordering was at least 10 times slower. In the M·ADP state, myosin heads are also disordered. When blebbistatin was added to M·ADP thick filaments, helical ordering was restored. However, blebbistatin did not improve the order of thick filaments lacking bound nucleotide. Addition of calcium to relaxed muscle homogenates induced thick-thin filament interaction and filament sliding. In the presence of blebbistatin, filament interaction was inhibited. These structural observations support the conclusion, based on biochemical studies, that blebbistatin inhibits myosin ATPase and actin interaction by stabilizing the closed switch 2 structure of the myosin head. These properties make blebbistatin a useful tool in structural and functional studies of cell motility and muscle contraction.  相似文献   

6.
J Lowy  D Popp    A A Stewart 《Biophysical journal》1991,60(4):812-824
Using x-rays from a laboratory source and an area detector, myosin layer lines and the diffuse scattering between them in the moderate angle region have been recorded. At full overlap, incubation of rigor muscles with S-1 greatly reduces the diffuse scattering. Also, three of the four actin-based layer lines lying close to the meridian (Huxley, H. E., and W. Brown, 1967. J. Mol. Biol. 30:384-434; Haselgrove, J. C. 1975. J. Mol. Biol. 92:113-143) increase, suggesting fuller labeling of the actin filaments. These results are consistent with the idea (Poulsen, F. R., and J. Lowy, 1983. Nature [Lond.]. 303:146-152) that some of the diffuse scattering in rigor muscles is due to a random mixture of actin monomers with and without attached myosin heads (substitution disorder). In relaxed muscles, regardless of overlap, lowering the temperature from 24 to 4 degrees C practically abolishes the myosin layer lines (a result first obtained by Wray, J.S. 1987. J. Muscle Res. Cell Motil. 8:62 (a). Abstr.), whilst the diffuse scattering between these layer lines increases appreciably. Similar changes occur in the passage from rest to peak tetanic tension in live frog muscle (Lowy, J., and F.R. Poulsen. 1990. Biophys. J. 57:977-985). Cooling the psoas demonstrates that the intensity relation between the layer lines and the diffuse scattering is of an inverse nature, and that the transition occurs over a narrow temperature range (12-14 degrees C) with a sigmoidal function. From these results it would appear that the helical arrangement of the myosin heads is very temperature sensitive, and that the disordering effect does not depend on the presence of actin. Measurements along the meridian reveal that the intensity of the diffuse scattering increases relatively little and does so in a nearly linear manner: evidently the axial order of the myosin heads is much less temperature sensitive. The combined data support the view (Poulsen, F. R., and J. Lowy. 1983. Nature [Lond.]. 303:146-152) that in relaxed muscles a significant part of the diffuse scattering originates from disordered myosin heads. The observation that the extent of the diffuse scattering is greater in the equatorial than in the meridional direction suggests that the disordered myosin heads have an orientation which is on average more parallel to the filament axis.  相似文献   

7.
S Malinchik  S Xu    L C Yu 《Biophysical journal》1997,73(5):2304-2312
By using synchrotron radiation and an imaging plate for recording diffraction patterns, we have obtained high-resolution x-ray patterns from relaxed rabbit psoas muscle at temperatures ranging from 1 degree C to 30 degrees C. This allowed us to obtain intensity profiles of the first six myosin layer lines and apply a model-building approach for structural analysis. At temperatures 20 degrees C and higher, the layer lines are sharp with clearly defined maxima. Modeling based on the data obtained at 20 degrees C reveals that the average center of the cross-bridges is at 135 A from the center of the thick filament and both of the myosin heads appear to wrap around the backbone. At 10 degrees C and lower, the layer lines become very weak and diffuse scattering increases considerably. At 4 degrees C, the peak of the first layer line shifts toward the meridian from 0.0047 to 0.0038 A(-1) and decreases in intensity approximately by a factor of four compared to that at 20 degrees C, although the intensities of higher-order layer lines remain approximately 10-15% of the first layer line. Our modeling suggests that as the temperature is lowered from 20 degrees C to 4 degrees C the center of cross-bridges extends radially away from the center of the filament (135 A to 175 A). Furthermore, the fraction of helically ordered cross-bridges decreases at least by a factor of two, while the isotropic disorder (the temperature factor) remains approximately unchanged. Our results on the order/disordering effects of temperature are in general agreement with earlier results of Wray [Wray, J. 1987. Structure of relaxed myosin filaments in relation to nucleotide state in vertebrate skeletal muscle. J. Muscle Res. Cell Motil. 8:62a (Abstr.)] and Lowy et al. (Lowy, J., D. Popp, and A. A. Stewart. 1991. X-ray studies of order-disorder transitions in the myosin heads of skinned rabbit psoas muscles. Biophys. J. 60:812-824). and support Poulsen and Lowy's hypothesis of coexistence of ordered and disordered cross-bridge populations in muscle (Poulsen, F. R., and J. Lowy. 1983. Small angle scattering from myosin heads in relaxed and rigor frog skeletal muscle. Nature (Lond.). 303:146-152.). However, our results added new insights into the disordered population. Present modeling together with data analysis (Xu, S., S. Malinchik, Th. Kraft, B. Brenner, and L. C. Yu. 1997. X-ray diffraction studies of cross-bridges weakly bound to actin in relaxed skinned fibers of rabbit psoas muscle. Biophys. J. 73:000-000) indicate that in a relaxed muscle, cross-bridges are distributed in three populations: those that are ordered on the thick filament helix and those that are disordered; and within the disordered population, some cross-bridges are detached and some are weakly attached to actin. One critical conclusion of the present study is that the apparent order <--> disorder transition as a function of temperature is not due to an increase/decrease in thermal motion (temperature factor) for the entire population, but a redistribution of cross-bridges among the three populations. Changing the temperature leads to a change in the fraction of cross-bridges located on the helix, while changing the ionic strength at a given temperature affects the disordered population leading to a change in the relative fraction of cross-bridges detached from and weakly attached to actin. Since the redistribution is reversible, we suggest that there is an equilibrium among the three populations of cross-bridges.  相似文献   

8.
The hydrolysis of Mg2+-adenosine 5'-triphosphate (ATP) by heavy meromyosin has been studied between +20 and -15 degrees C, especially in the low-temperature range, in a medium containing 30% (v/v) ethylene glycol by fluorometric, spectrophotometric, and potentiometric measurements. The time course of the fluorescence changes of the enzyme during the reaction depends markedly on the temperature in consequence of large differences between the activation energies of the various steps. The observed kinetics have been analyzed according to the simplified scheme of Bagshaw & Trentham [Bagshaw, C. R., & Trentham, D. R. (1974) Biochem. J. 141, 331-349]. The following results have been obtained. (1) The rate-limiting step of the reaction changes in this temperature range; at 20 degrees C M**.ADP.Pi is the predominant steady-state complex, and M*.ADP predominates at -15 degrees C, with a half-life of approximately 10 min. (2) As expected, on the basis that it is the dissociation of the M*.ADP complex which becomes rate limiting at low temperature, one observes, in the pre-steady-state below 0 degrees C, both a proton burst and a lag phase in ADP release. (3) At low temperature, the equilibrium M*.ATP in equilibrium M**.ADP.Pi is displaced to the left All the kinetic data obtained in this study are compatible with a simple pathway for the Mg2+-ATP hydrolysis by myosin and with sequential release of the reaction products.  相似文献   

9.
Myosin V is a cellular motor protein, which transports cargos along actin filaments. It moves processively by 36-nm steps that require at least one of the two heads to be tightly bound to actin throughout the catalytic cycle. To elucidate the kinetic mechanism of processivity, we measured the rate of product release from the double-headed myosin V-HMM using a new ATP analogue, 3'-(7-diethylaminocoumarin-3-carbonylamino)-3'-deoxy-ATP (deac-aminoATP), which undergoes a 20-fold increase in fluorescence emission intensity when bound to the active site of myosin V (Forgacs, E., Cartwright, S., Kovács, M., Sakamoto, T., Sellers, J. R., Corrie, J. E. T., Webb, M. R., and White, H. D. (2006) Biochemistry 45, 13035-13045). The kinetics of ADP and deac-aminoADP dissociation from actomyosin V-HMM, following the power stroke, were determined using double-mixing stopped-flow fluorescence. These used either deac-aminoATP as the substrate with ADP or ATP chase or alternatively ATP as the substrate with either a deac-aminoADP or deac-aminoATP chase. Both sets of experiments show that the observed rate of ADP or deac-aminoADP dissociation from the trail head of actomyosin V-HMM is the same as from actomyosin V-S1. The dissociation of ADP from the lead head is decreased by up to 250-fold.  相似文献   

10.
Adenosine triphosphate-dependent changes in myosin filament structure have been directly observed in whole muscle by electron microscopy of thin sections of rapidly frozen, demembranated frog sartorius specimens. In the presence of ATP the thick filaments show an ordered, helical array of cross-bridges except in the bare zone. In the absence of ATP they show two distinct appearances: in the region of overlap with actin, there is an ordered, rigorlike array of cross-bridges between the thick and thin filaments, whereas in the nonoverlap region (H-zone) the myosin heads move away from the thick filament backbone and lose their helical order. This result suggests that the presence of ATP is necessary for maintenance of the helical array of cross-bridges characteristic of the relaxed state. The primary effect of ATP removal on the myosin heads appears to be weaken their binding to the thick filament backbone; released heads that are close to an actin filament subsequently form a new actin-based, ordered array.  相似文献   

11.
Xu S  Gu J  Melvin G  Yu LC 《Biophysical journal》2002,82(4):2111-2122
It is well established that in a skeletal muscle under relaxing conditions, cross-bridges exist in a mixture of four weak binding states in equilibrium (A*M*ATP, A*M*ADP*P(i), M*ATP, and M*ADP*P(i)). It has been shown that these four weak binding states are in the pathway to force generation. In the past their structural, biochemical, and mechanical properties have been characterized as a group. However, it was shown that the myosin heads in the M*ATP state exhibited a disordered distribution along the thick filament, while in the M*ADP*P(i) state they were well ordered. It follows that the structures of the weakly attached states of A*M*ATP and A*M*ADP*P(i) could well be different. Individual structures of the two attached states could not be assigned because protocol for isolating the two states has not been available until recently. In the present study, muscle fibers are reacted with N-phenylmaleimide such that ATP hydrolysis is inhibited, i.e., the cross-bridge population under relaxing conditions is distributed only between the two states of M*ATP and A*M*ATP. Two-dimensional x-ray diffraction was applied to determine the structural characteristics of the attached A*M*ATP state. Because the detached state of M*ATP is disordered and does not contribute to layer line intensities, changes as a result of increasing attachment in the A*M*ATP state are attributable to that state alone. The equilibrium toward the attached state was achieved by lowering the ionic strength. The results show that upon attachment, both the myosin and the first actin associated layer lines increased intensities, while the sixth actin layer line was not significantly affected. However, the intensities remain weak despite substantial attachment. The results, together with modeling (see J. Gu, S. Xu and L. C. Yu, 2002, Biophys. J. 82:2123-2133), suggest that there is a wide range of orientation of the attached A*M*ATP cross-bridges while the myosin heads maintain some degree of helical distribution on the thick filament, suggesting a high degree of flexibility in the actomyosin complex. Furthermore, the lack of sensitivity of the sixth actin layer line suggests that the binding site on actin differs from the putative site for rigor binding. The significance of the flexibility in the A*M*ATP complex in the process of force generation is discussed.  相似文献   

12.
X-ray results are presented concerning the structural state of myosin heads of synthetic filaments in threads. These were made from purified rabbit skeletal muscle myosin and studied by x-ray diffraction and electron microscopy by Cooke et al. (Cooke, P. H., E. M. Bartels, G. F. Elliott, and R. A. Hughes, 1987, Biophys. J., 51:947-957). X-ray patterns show a meridional peak at a spacing of 14.4 nm. We concentrate here on the only other feature of the axial pattern: this is a central region of diffuse scatter, which we find to be similar to that obtained from myosin heads in solution (Mendelson, R. A., K. M. Kretzschmar, 1980, Biochemistry, 19:4103-4108). This means that the myosin heads have very large random displacements in all directions from their average positions, and that they are practically randomly oriented. The myosin heads do not contribute to the 14.4-nm peak, which must come entirely from the backbone. Comparison with x-ray data from the unstriated Taenia coli muscle of the guinea pig indicates that in this muscle at least 75% of the diffuse scatter comes from disordered myosin heads. The results confirm that the diffuse scatter in x-ray patterns from specimens that contain myosin filaments can yield information about the structural behavior of the myosin heads.  相似文献   

13.
We have used electron microscopy and proteolytic susceptibility to study the structural basis of myosin-linked regulation in synthetic filaments of scallop striated muscle myosin. Using papain as a probe of the structure of the head-rod junction, we find that this region of myosin is approximately five times more susceptible to proteolytic attack under activating (ATP/high Ca2+) or rigor (no ATP) conditions than under relaxing conditions (ATP/low Ca2+). A similar result was obtained with native myosin filaments in a crude homogenate of scallop muscle. Proteolytic susceptibility under conditions in which ADP or adenosine 5'-(beta, gamma-imidotriphosphate) (AMPPNP) replaced ATP was similar to that in the absence of nucleotide. Synthetic myosin filaments negatively stained under relaxing conditions showed a compact structure, in which the myosin cross-bridges were close to the filament backbone and well ordered, with a clear 14.5-nm axial repeat. Under activating or rigor conditions, the cross-bridges became clumped and disordered and frequently projected further from the filament backbone, as has been found with native filaments; when ADP or AMPPNP replaced ATP, the cross-bridges were also disordered. We conclude (a) that Ca2+ and ATP affect the affinity of the myosin cross-bridges for the filament backbone or for each other; (b) that the changes observed in the myosin filaments reflect a property of the myosin molecules alone, and are unlikely to be an artifact of negative staining; and (c) that the ordered structure occurs only in the relaxed state, requiring both the presence of hydrolyzed ATP on the myosin heads and the absence of Ca2+.  相似文献   

14.
The results discussed in the preceding paper (Levine, R. J. C., J. L. Woodhead, and H. A. King. 1991. J. Cell Biol. 113:563-572.) indicate that A-band shortening in Limulus muscle is a thick filament response to activation that occurs largely by fragmentation of filament ends. To assess the effect of biochemical changes directly associated with activation on the length and structure of thick filaments from Limulus telson muscle, a dually regulated tissue (Lehman, W., J. Kendrick-Jones, and A. G. Szent Gyorgyi. 1973. Cold Spring Harbor Symp. Quant. Biol. 37:319-330.) we have examined the thick filament response to phosphorylation of myosin regulatory light chains. In agreement with the previous work of J. Sellers (1981. J. Biol. Chem. 256:9274-9278), Limulus myosin, incubated with partially purified chicken gizzard myosin light chain kinase (MLCK) and [gamma 32P]-ATP, binds 2 mol phosphate/mole protein. On autoradiographs of SDS-PAGE, the label is restricted to the two regulatory light chains, LC1 and LC2. Incubation of long (greater than or equal to 4.0 microns) thick filaments, separated from Limulus telson muscle under relaxing conditions, with either intact MLCK in the presence of Ca2+ and calmodulin, or Ca2(+)-independent MLCK obtained by brief chymotryptic digestion (Walsh, M. P., R. Dabrowska, S. Hinkins, and D. J. Hartshorne. 1982. Biochemistry. 21:1919-1925), causes significant changes in their structure. These include: disordering of the helical surface arrangement of myosin heads as they move away from the filament backbone; the presence of distal bends and breaks, with loss of some surface myosin molecules, in each polar filament half; and the production of shorter filaments and end-fragments. The latter structures are similar to those produced by Ca2(+)-activation of skinned fibers (Levine, R. J. C., J. L. Woodhead, and H. A. King. J. Cell Biol. 113:563-572). Rinsing experimental filament preparations with relaxing solution before staining restores some degree of order of the helical surface array, but not filament length. We propose that outward movement of myosin heads and thick filament shortening in Limulus muscle are responses to activation that are dependent on phosphorylation of regulatory myosin light chains. Filament shortening may be due, in large part, to breakage at the filament ends.  相似文献   

15.
Contraction of many muscles is activated in part by the binding of Ca2+ to, or phosphorylation of, the myosin heads on the surface of the thick filaments. In relaxed muscle, the myosin heads are helically ordered and undergo minimal interaction with actin. On Ca2+ binding or phosphorylation, the head array becomes disordered, reflecting breakage of the head-head and other interactions that underlie the ordered structure. Loosening of the heads from the filament surface enables them to interact with actin filaments, bringing about contraction. On relaxation, the heads return to their ordered positions on the filament backbone. In scallop striated adductor muscle, the disordering that takes place on Ca2+ binding occurs on the millisecond time scale, suggesting that it is a key element of muscle activation. Here we have studied the reverse process. Using time-resolved negative staining electron microscopy, we show that the rate of reordering on removal of Ca2+ also occurs on the same physiological time scale. Direct observation of images together with analysis of their Fourier transforms shows that activated heads regain their axial ordering within 20 ms and become ordered in their final helical positions within 50 ms. This rapid reordering suggests that reformation of the ordered structure, and the head-head and other interactions that underlie it, is a critical element of the relaxation process.  相似文献   

16.
The purpose of this study was to determine whether steric blockage of one head by the second head of native two-headed myosin was responsible for the inactivity of nonphosphorylated two-headed myosin compared with the high activity of single-headed myosin, as suggested on the basis of electron microscopy of two-dimensional crystals of heavy meromyosin (Wendt, T., Taylor, D., Messier, T., Trybus, K. M., and Taylor, K. A. (1999) J. Cell Biol. 147, 1385-1390; and Wendt, T., Taylor, D., Trybus, K. M., and Taylor, K. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 4361-4366). Our earlier cryo-atomic force microscopy (cryo-AFM) (Zhang, Y., Shao, Z., Somlyo, A. P., and Somlyo, A. V. (1997) Biophys. J. 72, 1308-1318) indicates that thiophosphorylation of the regulatory light chain increases the separation of the two heads of a single myosin molecule, but the thermodynamic probability of steric hindrance by strong binding between the two heads was not determined. We now report this probability determined by cryo-AFM of single whole myosin molecules shown to have normal low ATPase activity (0.007 s-1). We found that the thermodynamic probability of the relative head positions of nonphosphorylated myosin was approximately equal between separated heads as compared with closely apposed heads (energy difference of 0.24 kT (where k is a Boltzman constant and T is the absolute temperature)), and thiophosphorylation increased the number of molecules having separated heads (energy advantage of -1.2 kT (where k is a Boltzman constant and I is the absolute temperature)). Our results do not support the suggestion that strong binding of one head to the other stabilizes the blocked conformation against thermal fluctuations resulting in steric blockage that can account for the low activity of nonphosphorylated two-headed myosin.  相似文献   

17.
Human alpha-synuclein is a 140-amino acid protein of unknown function abundantly expressed in the brain and found in Lewy bodies, a characteristic feature of Parkinson's disease. Alpha-synuclein is random in water under physiological conditions, but the first approximately 100 residues interact with SDS micelles or acidic phospholipid small unilamellar vesicles and adopt an ordered conformation. The rest of the molecule remains disordered in the bulk of the solution. The conformation of the N-terminal portion of the molecule in lipids was described as an extended helix [Ramakrishnan, M., Jensen, P. H., and Marsh, D. (2003) Biochemistry 42, 12919-12926], as two distinct alpha-helices interrupted by a two-residue break [Chandra, S., Chen, X., Rizo, J., Jahn, R., and Sudhof, T. C. (2003) J. Biol. Chem. 278, 15313-15318], or as a noncanonical conformation, the alpha11/3 helix [Bussell, R., Jr., and Eliezer, D. (2003) J. Mol. Biol. 329, 763-778]. We characterized the topology of the different regions of alpha-synuclein relative to the surface of SDS micelles using spin probe-induced broadening of NMR signals, (15)N relaxation measurements, and fluorescence spectroscopy. Our results support the presence of two N-terminal helices, positioned on the surface of the micelle and separated by a flexible stretch. The region of residues 61-95 of the protein also adopts a helical conformation, but it is partially embedded in the micelle. These results could shed some light on the role of the membrane on the aggregation process of alpha-synuclein.  相似文献   

18.
Static and dynamic light scattering, viscosity, and optical rotation measurements have been made at eight different temperatures between 25 and 75 degrees C on two succinoglycan samples (sodium salt) with weight-average molecular weights M(w) of 7.14 x 10(5) and 3.54 x 10(5) (at 25 degrees C) in 0.01 M aqueous NaCl to investigate the thermally induced order-disorder conformation change of the polysaccharide. Additionally, viscometry and polarimetry have been performed for a sodium salt sample (M(w) = 4.55 x 10(5) at 25 degrees C) whose M(w), z-average radius of gyration (z)(1/2), and hydrodynamic radius R(H) in the aqueous salt had been determined previously. As the temperature increases, M(w), (z)(1/2), R(H), and the intrinsic viscosity for every sample sharply decrease around 55 degrees C where the specific rotation at 300 nm sigmoidally increases. In particular, M(w) at 25 degrees C (i.e., in the ordered helical state) is twice as large as that at 75 degrees C (i.e., in the disordered state). These findings substantiate that the ordered structure is composed of two chains and hence is a double helix. Data analysis shows that this helix at 25 degrees C is characterized by an unperturbed wormlike chain with a helix pitch of about 2 nm (per repeating unit) and a persistence length of about 50 nm and that upon heating, it dissociates directly (i.e., in all-or-none fashion) to disordered chains of a similar contour length but with a much smaller persistence length of about 10 nm. The temperature dependence of the light scattering second viral coefficient is discussed in relation to the association of disordered chains in the cooling process.  相似文献   

19.
Myosin filaments isolated from scallop striated muscle have been activated by calcium-containing solutions, and their structure has been examined by electron microscopy after negative staining. The orderly helical arrangement of myosin projections characteristic of the relaxed state is largely lost upon activation. The oblique striping that arises from alignment of elongated projections along the long-pitched helical tracks is greatly weakened, although a 145 A axial periodicity is sometimes partially retained. The edges of the filaments become rough, and the myosin heads move outwards as their helical arrangement becomes disordered. Crossbridges at various angles appear to link thick and thin filaments after activation. The transition from order to disorder is reversible and occurs over a narrow range of free calcium concentration near pCa 5.7. Removal of nucleotide, as well as dissociation of regulatory light chains, also disrupts the ordered helical arrangement of projections. We suggest that the relaxed arrangement of the projections is probably maintained by intermolecular interactions between myosin molecules, which depend on the regulatory light chains. Calcium binding changes the interactions between light chains and the rest of the head, activating the myosin molecule. Intermolecular contacts between molecules may thus be altered and may propagate activation cooperatively throughout the thick filament.  相似文献   

20.
The interaction of a series of bifunctional reagents with skeletal muscle myosin has been studied. In the di-imido ester series dimethylmalonimidate failed to generate any cross-linked species, whereas the adipic and higher analogues gave dimers of myosin heavy chains. Analysis of free amino groups after reaction with these reagents and with the reducible species dimethyldithiobis(propionimidate) showed that no more than two to three cross-links per molecule were introduced. By contrast, the bifunctional reducible acylating agent, dithiobis(succinimidylpropionate), reacted with annihilation of about 10% of the amino groups under mild conditions that precluded the formation of intermolecularly linked species. Digestion of the intramolecularly cross-linked myosin with papain, followed by analysis of the fragments by gel electrophoresis, revealed extensive cross-linking between the globular heads of the myosin molecules. The subfragment 1 dimers regenerated subfragment 1 on reduction, as shown by the electrophoretic mobility and amino acid analysis. The extent of cross-linking, and therefore presumably the average relative orientation or freedom of the two heads, was unaffected by the addition of ADP and calcium ions. The internally cross-linked myosin retains practically its full calcium-activated adenosine triphosphatase activity, but in contrast to native myosin is soluble even at very low ionic strength. Circular dichroism measurements show that the alpha helical conformation is undisturbed in cross-linked myosin, but the sedimentation coefficient is considerably higher than that of the native protein, possibly due to freezing of the heads in a "closed" configuration. The light chaiins are not cross-linked to the heavy chains, except under extreme conditions that leads to intermolecular cross-linking and inactivation. The presence of calcium ions protects dithiobisnitrobenzoate light chains against degradation by papain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号