首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our group has shown that numerous factors can influence how tissue engineered tendon constructs respond to in vitro mechanical stimulation. Although one study showed that stimulating mesenchymal stem cell (MSC)-collagen sponge constructs significantly increased construct linear stiffness and repair biomechanics, a second study showed no such effect when a collagen gel replaced the sponge. While these results suggest that scaffold material impacts the response of MSCs to mechanical stimulation, a well-designed intra-animal study was needed to directly compare the effects of type-I collagen gel versus type-I collagen sponge in regulating MSC response to a mechanical stimulus. Eight constructs from each cell line (n=8 cell lines) were created in specially designed silicone dishes. Four constructs were created by seeding MSCs on a type-I bovine collagen sponge, and the other four were formed by seeding MSCs in a purified bovine collagen gel. In each dish, two cell-sponge and two cell-gel constructs from each line were then mechanically stimulated once every 5 min to a peak strain of 2.4%, for 8 h/day for 2 weeks. The other dish remained in an incubator without stimulation for 2 weeks. After 14 days, all constructs were failed to determine mechanical properties. Mechanical stimulation significantly improved the linear stiffness (0.048+/-0.009 versus 0.015+/-0.004; mean+/-SEM (standard error of the mean ) N/mm) and linear modulus (0.016+/-0.004 versus 0.005+/-0.001; mean+/-SEM MPa) of cell-sponge constructs. However, the same stimulus produced no such improvement in cell-gel construct properties. These results confirm that collagen sponge rather than collagen gel facilitates how cells respond to a mechanical stimulus and may be the scaffold of choice in mechanical stimulation studies to produce functional tissue engineered structures.  相似文献   

2.
Qu LH  Sun MX 《Plant cell reports》2007,26(8):1187-1193
When mechanical stimulation is applied to a plant cell, the nucleus usually shows oriented movement to the site of stimulation (as a defensive response). Former researchers have revealed that applying mechanical pressure to plant tissues could line up cell division plane. A proposal, therefore, was put forward that cells inside plant tissue could receive mechanical signals from their growing neighbors to adjust their nuclear position and thus regulate the orientation of their dividing plane in order to form characteristic morphology of plant organs. To explore nuclear capacity and sensitivity to rapidly changing signals, multiple mechanical stimulations were applied to the same plant cell at intervals, either locally or at distance. The results revealed that the nucleus was highly sensitive to mechanical stimulations. It responded quickly to both local and distant stimulation by showing oriented movement toward the stimulation site. The nucleus was able to respond immediately to a second stimulation (no time lag) by starting up a second oriented movement toward the new signal; the completion of nuclear oriented movement to a first site of stimulation was not necessary for startup of a subsequent movement track to a second stimulation site, regardless of whether the second stimulation was applied ahead of or behind the moving nucleus. The nucleus responded to a second stimulation without loss of velocity, whether or not it was in a resting or moving state. This novel finding favors the proposal that growing tissues adjust the location of nuclei in cells by varying mechanical pressures; they thus control cell division according to a plan whereby organs and their constituent tissues develop in an orderly, specified manner. It appears that the enhanced sensitivity of plant cells to mechanical pressure is necessary not only in response to the external environment, but also to the developmental microenvironment inside the tissues.  相似文献   

3.
Tendon is a mechanosensitive tissue that transmits force from muscle to bone. Physiological loading contributes to maintaining the homeostasis and adaptation of tendon, but aberrant loading may lead to injury or failed repair. It is shown that stem cells respond to mechanical loading and play an essential role in both acute and chronic injuries, as well as in tendon repair. In the process of mechanotransduction, mechanical loading is detected by mechanosensors that regulate cell differentiation and proliferation via several signaling pathways. In order to better understand the stem-cell response to mechanical stimulation and the potential mechanism of the tendon repair process, in this review, we summarize the source and role of endogenous and exogenous stem cells active in tendon repair, describe the mechanical response of stem cells, and finally, highlight the mechanotransduction process and underlying signaling pathways.  相似文献   

4.
5.

Introduction  

Recent evidence suggests that intervertebral disc (IVD) cells derived from degenerative tissue are unable to respond to physiologically relevant mechanical stimuli in the 'normal' anabolic manner, but instead respond by increasing matrix catabolism. Understanding the nature of the biological processes which allow disc cells to sense and respond to mechanical stimuli (a process termed 'mechanotransduction') is important to ascertain whether these signalling pathways differ with disease. The aim here was to investigate the involvement of interleukin (IL)-1 and IL-4 in the response of annulus fibrosus (AF) cells derived from nondegenerative and degenerative tissue to cyclic tensile strain to determine whether cytokine involvement differed with IVD degeneration.  相似文献   

6.
Bone cells can sense physical forces and convert mechanical stimulation conditions into biochemical signals that lead to expression of mechanically sensitive genes and proteins. However, it is still poorly understood how genes and proteins in bone cells are orchestrated to respond to mechanical stimulations. In this research, we applied integrated proteomics, statistical, and network biology techniques to study proteome-level changes to bone tissue cells in response to two different conditions, normal loading and fatigue loading. We harvested ulna midshafts and isolated proteins from the control, loaded, and fatigue loaded Rats. Using a label-free liquid chromatography tandem mass spectrometry (LC-MS/MS) experimental proteomics technique, we derived a comprehensive list of 1,058 proteins that are differentially expressed among normal loading, fatigue loading, and controls. By carefully developing protein selection filters and statistical models, we were able to identify 42 proteins representing 21 Rat genes that were significantly associated with bone cells' response to quantitative changes between normal loading and fatigue loading conditions. We further applied network biology techniques by building a fatigue loading activated protein-protein interaction subnetwork involving 9 of the human-homolog counterpart of the 21 rat genes in a large connected network component. Our study shows that the combination of decreased anti-apoptotic factor, Raf1, and increased pro-apoptotic factor, PDCD8, results in significant increase in the number of apoptotic osteocytes following fatigue loading. We believe controlling osteoblast differentiation/proliferation and osteocyte apoptosis could be promising directions for developing future therapeutic solutions for related bone diseases.  相似文献   

7.
Fibroblast biology in three-dimensional collagen matrices   总被引:26,自引:0,他引:26  
Research on fibroblast biology in three-dimensional collagen matrices offers new opportunities to understand the reciprocal and adaptive interactions that occur between cells and surrounding matrix in a tissue-like environment. Such interactions are integral to the regulation of connective tissue morphogenesis and dynamics that characterizes tissue homeostasis and wound repair. During fibroblast-collagen matrix remodeling, mechanical signals from the remodeled matrix feed back to modulate cell behavior in an iterative process. As mechanical loading (tension) within the matrix increases, the mechanisms used by cells to remodel the matrix change. Fibroblasts in matrices that are under tension or relaxed respond differently to growth factor stimulation, and switching between mechanically loaded and unloaded conditions influences whether cells acquire proliferative/biosynthetic active or quiescent/resting phenotypes.  相似文献   

8.
Response Properties of a Sensory Hair Excised from Venus''s Flytrap   总被引:2,自引:0,他引:2  
Multicellular sensory hairs were excised from the leaf of Venus's flytrap, and the sensory cells were identified by a destructive dissection technique. The sensory layer includes a radially symmetrical rosette of 20–30 apparently identical cells, and the sensory cells are organized in a plane normal to the long axis of the sensory hair. The sensory cells were probed with intracellular glass electrodes. The resting membrane potential was about -80 mv, and the response to a mechanical stimulus consisted of a graded response and an "action potential." The action potential appears to be similar to the action potential which propagates over the surface of the leaf. In the absence of stimulation, the upper and lower membranes of a single sensory cell behave in an electrically symmetrical fashion. Upon stimulation, however, the upper and lower membranes become electrically asymmetrical. Limiting values for the response asymmetry were calculated on the hypothesis of an electrical model consistent with the histology of the sensory cells.  相似文献   

9.
Cells are complex, dynamic systems that respond to various in vivo stimuli including chemical, mechanical, and scaffolding alterations. The influence of mechanics on cells is especially important in physiological areas that dictate what modes of mechanics exist. Complex, multivariate physiological responses can result from multi-factorial, multi-mode mechanics, including tension, compression, or shear stresses. In this study, we present a novel device based on elastomeric materials that allowed us to stimulate NIH 3T3 fibroblasts through uniaxial strip stretching or shear fluid flow. Cell shape and structural response was observed using conventional approaches such as fluorescent microscopy. Cell orientation and actin cytoskeleton alignment along the direction of applied force were observed to occur after an initial 3 h time period for shear fluid flow and static uniaxial strip stretching experiments although these two directions of alignment were oriented orthogonal relative to each other. This response was then followed by an increasingly pronounced cell and actin cytoskeleton alignment parallel to the direction of force after 6, 12, and 24 h, with 85% of the cells aligned along the direction of force after 24 h. These results indicate that our novel device could be implemented to study the effects of multiple modes of mechanical stimulation on living cells while probing their structural response especially with respect to competing directions of alignment and orientation under these different modes of mechanical stimulation. We believe that this will be important in a diversity of fields including cell mechanotransduction, cell–material interactions, biophysics, and tissue engineering.  相似文献   

10.
Summary Ultrastructural studies made on the micropyle of sunflower before and after pollination resulted in the following observations. (1) The micropyle is closed instead of a hole or canal. The inner epidermis of the integument on both sides of the micropyle is in close contact at the apex of the ovule. The boundary between the two sides consists of two layers of epidermal cuticle. (2) The micropyle contains a transmitting tissue. The micropyle is composed of an intercellular matrix produced by the epidermal cells of the integument. (3) The micropyle is asymmetrical, and is much wider on the side proximal to the funicle. On the funicle side the cells adjacent to the micropyle are similar to those of the transmitting tissue: they have large amounts of intercellular matrix and contain abundant dictyosomes, rough ER, and starch grains, and provide an appropriate environment for growth of the pollen tubes. The cells distal to the funicle are rich in rough ER and lipid bodies; they lack large intercellular spaces. (4) The micropyle is variable in the axial direction, i.e., it is much larger and more asymmetric at the level distal to the embryo sac than at a level close to the embryo sac. After pollination, one to four pollen tubes are seen in a micropyle. During their passage through the micropyle, most pollen tubes are restricted to the side proximal to the funicle. There is a greater tendency (81%) for the degenerate synergid to be located toward the funicle, i.e., at the same side as the pollen tube pathway. The data indicate a close relationship between micropyle organization, orientation of pollen tube growth, and synergid degeneration.  相似文献   

11.
Extracellular matrix (ECM) provides a dynamic three-dimensional structure which translates mechanical stimuli to cells. This local mechanical stimulation may direct biological function including tissue development. Theories describing the role of mechanical regulators hypothesize the cellular response to variations in the external mechanical forces on the ECM. The exact ECM mechanical stimulation required to generate a specific pattern of localized cellular displacement is still unknown. The cell to tissue inverse problem offers an alternative approach to clarify this relationship. Developed for structural dynamics, the inverse dynamics problem translates measurements of local state variables (at the cell level) into an unknown or desired forcing function (at the tissue or ECM level). This paper describes the use of eigenvalues (resonant frequencies), eigenvectors (mode shapes), and dynamic programming to reduce the mathematical order of a simplified cell–tissue system and estimate the ECM mechanical stimulation required for a specified cellular mechanical environment. Finite element and inverse numerical analyses were performed on a simple two-dimensional model to ascertain the effects of weighting parameters and a reduction of analytical modes leading toward a solution. Simulation results indicate that the reduced number of mechanical modes (from 30 to 14 to 7) can adequately reproduce an unknown force time history on an ECM boundary. A representative comparison between cell to tissue (inverse) and tissue to cell (boundary value) modeling illustrates the multiscale applicability of the inverse model.  相似文献   

12.
The human endometrium (EM) contains macrophages, NK cells, T cells, B cells, and neutrophils in contact with a variety of stromal and epithelial cells. The interplay between these different cell types and their roles in defense against pathogen invasion in this specialized tissue are important for controlling infection and reproduction. TLRs are a family of receptors able to recognize conserved pathogen-associated molecular patterns. In this study, we determined the expression of TLRs on uterine NK (uNK) cells from the human EM and the extent to which uNK cells responded to TLR agonist stimulation. uNK cells expressed TLRs 2, 3, and 4, and produced IFN-gamma when total human endometrial cells were stimulated with agonists to TLR2 or TLR3 (peptidoglycan or poly(I:C), respectively). Activated uNK cell clones produced IFN-gamma upon stimulation with peptidoglycan or poly(I:C). However, purified uNK cells did not respond directly to TLR agonists, but IFN-gamma was produced by uNK cells in response to TLR stimulation when cocultured with APCs. These data indicate that uNK cells express TLRs and that they can respond to TLR agonists within EM by producing IFN-gamma. These data also indicate that the uNK cells do not respond directly to TLR stimulation, but rather their production of IFN-gamma is dependent upon interactions with other cells within EM.  相似文献   

13.
The carbohydrate antigen (glycoantigen) PSA from an intestinal commensal bacteria is able to down-regulate inflammatory bowel disease in model mice, suggesting that stimulation with PSA results in regulatory T cell (Treg) generation. However, mechanisms of how peripheral human T cells respond and home in response to commensal antigens are still not understood. Here, we demonstrate that a single exposure to PSA induces differentiation of human peripheral CD4(+) T cells into type-Tr1 Tregs. This is in contrast to mouse models where PSA induced the production of Foxp3(+) iTregs. The human PSA-induced Tr1 cells are profoundly anergic and exhibit nonspecific bystander suppression mediated by IL-10 secretion. Most surprisingly, glycoantigen exposure provoked expression of gut homing receptors on their surface. These findings reveal a mechanism for immune homeostasis in the gut whereby exposure to commensal glycoantigens provides the requisite information to responding T cells for proper tissue localization (gut) and function (anti-inflammatory/regulatory).  相似文献   

14.
Regulation of ciliary activity in the mammalian respiratory tract   总被引:1,自引:0,他引:1  
A computer-assisted transillumination, photoelectronic technique has been used to measure the beat frequency of cilia of rabbit tracheal cells grown in culture. When ciliated cells are mechanically stimulated with a microprobe the cells respond rapidly by increasing the beat frequency of their cilia. This mechanosensitive response is not limited to the stimulated cell, but is communicated in all directions to neighboring cells. To characterize the progression of this communicated response we used an automated computer-assisted imaging system to examine high-speed films of responding cells. The time it takes for the response to be transmitted between cells is slow (1-3 sec) with each cell responding after a lag-time that is proportional to the distance of the cell from the stimulated cell. We have confirmed that gap junctions are present between cells and that adjacent or non-adjacent ciliated, as well as non-ciliated, cells are electrically coupled. To correlate the mechanosensitive response with intracellular calcium fluxes we have used fura-2, a calcium-specific fluorescent dye, and digital video microscopy. Mechanical stimulation of the cultured ciliated cells, in the presence of extracellular calcium, resulted in an initial increase in intracellular calcium, which was communicated to neighboring cells. Without extracellular calcium, mechanosensitivity of cultured cells was lost and a small decrease in intracellular calcium was observed in the stimulated cell. However, neighboring cells still displayed an increase in intracellular calcium. The time course and general pattern of calcium increase in adjacent cells was similar to the responses in ciliary activity produced by mechanical stimulation. Ciliary beat frequency is also elevated by beta-adrenergic drugs independently of mechanosensitivity. These responses are important because they could provide a dual regulatory mechanism for the control of mucus transport. Adrenergic agonists could provide non-specific control by increasing ciliary activity throughout the airways while mechanosensitivity could provide local control by increasing activity in those regions of heavy mucus load.  相似文献   

15.
Mechanical stretching of connective tissue occurs with normal movement and postural changes, as well as treatments including physical therapy, massage and acupuncture. Connective tissue fibroblasts were recently shown to respond actively to short-term mechanical stretch (minutes to hours) with reversible cytoskeletal remodeling, characterized by extensive cell spreading and lamellipodia formation. In this study, we have examined the effect of tissue stretch on the distribution of α- and β-actin in subcutaneous tissue fibroblasts ex vivo. Normal fibroblasts uniformly exhibited α-smooth muscle actin (α-SMA) immunoreactivity. Unlike cultured fibroblasts and smooth muscle cells, α-SMA in these fibroblasts was not in F-actin form (indicated by lack of phalloidin co-localization) nor was it organized into distinct stress fibers. The lack of stress fibers and fibronexus was confirmed by electron microscopy, indicating that these cells were not myofibroblasts. In unstretched tissue, the pattern of α-actin was diffuse and granular. With tissue stretch (30 min), α-actin formed a star-shaped pattern centered on the nucleus, while β-actin extended throughout the cytoplasm including lamellipodia and cell cortex. This dual response pattern of α- and β-actin may be an important component of cellular mechanotransduction mechanisms relevant to physiologic and therapeutic mechanical forces applied to connective tissue.  相似文献   

16.
Mechanobiology of tendon   总被引:9,自引:0,他引:9  
Tendons are able to respond to mechanical forces by altering their structure, composition, and mechanical properties--a process called tissue mechanical adaptation. The fact that mechanical adaptation is effected by cells in tendons is clearly understood; however, how cells sense mechanical forces and convert them into biochemical signals that ultimately lead to tendon adaptive physiological or pathological changes is not well understood. Mechanobiology is an interdisciplinary study that can enhance our understanding of mechanotransduction mechanisms at the tissue, cellular, and molecular levels. The purpose of this article is to provide an overview of tendon mechanobiology. The discussion begins with the mechanical forces acting on tendons in vivo, tendon structure and composition, and its mechanical properties. Then the tendon's response to exercise, disuse, and overuse are presented, followed by a discussion of tendon healing and the role of mechanical loading and fibroblast contraction in tissue healing. Next, mechanobiological responses of tendon fibroblasts to repetitive mechanical loading conditions are presented, and major cellular mechanotransduction mechanisms are briefly reviewed. Finally, future research directions in tendon mechanobiology research are discussed.  相似文献   

17.
《Zoology (Jena, Germany)》2014,117(4):282-291
Although sponges are still often considered to be simple, inactive animals, both larvae and adults of different species show clear coordination phenomena triggered by extrinsic and intrinsic stimuli. Chondrosia reniformis, a common Mediterranean demosponge, lacks both endogenous siliceous spicules and reinforcing spongin fibers and has a very conspicuous collagenous mesohyl. Although this species can stiffen its body in response to mechanical stimulation when handled, almost no quantitative data are available in the literature on this phenomenon. The present work was intended to quantify the dynamic response to mechanical stimulation both of intact animals and isolated tissue samples in order to evaluate: (i) the magnitude of stiffening; (ii) the relationship between the amount of stimulation and the magnitude of the stiffening response; (iii) the ability of the whole body to react to localized stimulation; (iv) the possible occurrence of a conduction mechanism and the role of the exopinacoderm (outer epithelium). Data on mesohyl tensility obtained with mechanical tests confirmed the difference between stimulated and non-stimulated isolated tissue samples, showing a significant relationship between ectosome stiffness and the amount of mechanical stimulation. Our experiments revealed a significant difference in tensility between undisturbed and maximally stiffened sponges and evidence of signal transmission that requires a continuous exopinacoderm. We also provide further evidence for the presence of a chemical factor that alters the interaction between collagen fibrils, thereby changing the mechanical properties of the mesohyl.  相似文献   

18.
Chondrocytes comprise less than 10% of cartilage tissue but are responsible for sensing and responding to mechanical stimuli imposed on the joint. However, the effect of mechanical signals at the cellular level is not yet fully defined. The purpose of this study was to test the hypothesis that mechanical stimulation in the form of cyclic strain modulates proliferative capacity and integrin expression of chondrocytes from osteoarthritic knee joints. Chondrocytes isolated from articular cartilage during total knee arthroplasty were propagated on flexible silicone membranes. The cells were subjected to cyclic strain for 24 h using a computer-controlled vacuum device, with replicate samples maintained under static conditions. Our results demonstrated increase in proliferative capacity of the cells subjected to cyclic strain compared with cells maintained under static conditions. The flexed cells also exhibited upregulation of the chondrocytic gene markers type II collagen and aggrecan. In addition, cyclic strain resulted in increased expression of the alpha2 and alpha5 integrin subunits, as well as an increased expression of vimentin. There was also intracellular reconfiguration of the enzyme protein kinase C. Our findings suggest that these molecules may play a role in the signal transduction pathway, eliciting cellular response to mechanical stimulation.  相似文献   

19.
Receåfindings indicate that cockroaches escape in response to tactile stimulation as well as they do in response to the classic wind puff stimulus. The thoracic interneurons that receive inputs from ventral giant interneurons also respond to tactile stimulation and therefore, represent a potential site of convergence between wind and tactile stimulation as well as other sensory modalities. In this article, we characterize the tactile response of these interneurons, which are referred to as type-A thoracic interneurons (TIAs). In response to tactile stimulation of the body cuticle, TIAs typically respond with a short latency biphasic depolarization which often passes threshold for action potentials. The biphasic response is not typical of responses to wind stimulation nor of tactile stimulation of the antennae. It is also not seen in tactile responses of thoracic interneurons that are not part of the TIA group. The responses of individual TIAs to stimulation of various body locations were mapped. The left-right directional properties of TIAs are consistent with their responses to wind puffs from various different directions. Cells that respond equally well to wind from the left and right side also respond equally well to tactile stimuli on the left and right side of the animal's body. In contrast, cells that are biased to wind on one side are also biased to tactile stimulation on the same side. In general, tactile responses directed at body cuticle are phasic rather than tonic, occurring both when the tactile stimulator is depressed and released. The response reflects stimulus strength and follows repeated stimulation quite well. However, the first phase of the biphasic response is more robust during high-frequency stimulation than the second phase. TIAs also respond to antennal stimulation. However, here the response characteristics are complicated by the fact that movement of either antenna evokes descending activity in both left and right thoracic connectives. The data suggest that the TIAs make up a multimodal site of sensory convergence that is capable of generating an oriental escape turn in response to any one of several sensory cues. 1994 John Wiley & Sons, Inc.  相似文献   

20.
Mechanically induced cell deformations have been shown to influence chondrocyte response in 3D culture. However, the relationship between the mechanical stimulation and cell response is not yet fully understood. In this study a finite element model was developed to investigate cell-matrix interactions under unconfined compression conditions, using a tissue engineered encapsulating hydrogel seeded with chondrocytes. Model predictions of stress and strain distributions within the cell and on the cell boundary were shown to exhibit space-dependent responses that varied with scaffold mechanical properties, the presence of a pericellular matrix (PCM), and the cell size. The simulations predicted that when the cells were initially encapsulated into the hydrogel scaffolds, the cell size hardly affected the magnitude of the stresses and strains that were reaching the encapsulated cells. However, with the inclusion of a PCM layer, larger cells experienced enhanced stresses and strains resulting from the mechanical stimulation. It was also noted that the PCM had a stress shielding effect on the cells in that the peak stresses experienced within the cells during loading were significantly reduced. On the other hand, the PCM caused the stresses at the cell-matrix interface to increase. Based on the model predictions, the PCM modified the spatial stress distribution within and around the encapsulated cells by redirecting the maximum stresses from the periphery of the cells to the cell nucleus. In a tissue engineered cartilage exposed to mechanical loading, the formation of a neo-PCM by encapsulated chondrocytes appears to protect them from initially excessive mechanical loading. Predictive models can thus shed important insight into how chondrocytes remodel their local environment in order to redistribute mechanical signals in tissue engineered constructs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号