首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Paenibacillus polymyxa GS01 secretes Cel44C-Man26A as a multifunctional enzyme with cellulase, xylanase, lichenase, and mannanase activities. Cel44C-Man26A consists of 1,352 amino acids in which present a catalytic domain (CD) of the glycosyl hydrolase family 44 (GH44), fibronectin domain type 3 (Fn3), catalytic domain of glycosyl hydrolase family 26 (GH26), and a cellulose-binding module type 3 (CBM3). A truncated Cel44C-Man26A protein, consisting of 549 amino acid residues, reacted as a multifunctional mature enzyme despite the absence of the 10 amino acids containing GH44, Fn3, GH26, and CBM3. However, the multifunctional activity was not found in the mature Cel44C-Man26A protein truncated to less than 548 amino acids. The truncated Cel44C-Man26A proteins showed the optimum pH for the lichenase activity was pH 7.0, pH 6.0 for the xylanase and mannanase, and pH 5.0 for the cellulase. The truncated Cel44C-Man26A proteins exhibited enzymatic activity 40–120% higher than the full-length Cel44C.  相似文献   

2.

Background

An array of glycoside hydrolases with multiple substrate specificities are required to digest plant cell wall polysaccharides. Cel5E from Clostridium thermocellum and Cel5A from Thermotoga maritima are two glycoside hydrolase family 5 (GH5) enzymes with high sequence and structural similarity, but notably possess different substrate specificities; the former is a bifunctional cellulase/xylanase and the latter is a cellulase/mannanase. A specific loop in TmCel5A, Tmloop, is one of the most structurally divergent regions compared to CtCel5E and interacts with substrates, suggesting the importance for mannan recognition.

Method

A Tmloop inserted CtCel5E and its related mutants were produced to investigate the role of Tmloop in catalysis. Crystal structure of CtCel5E-TmloopF267A followed by site-direct mutagenesis reveals the mechanism. RtCelB, a homolog with Tmloop was identified to have mannanase activity.

Result

Tmloop incorporation enables CtCel5E to gain mannanase activity. Tyr270, His277, and Trp282 in the Tmloop are indispensable for CtCel5E-Tmloop catalysis, and weakening hydrophobic environment near the Tmloop enhances enzyme kcat. Using our newly identified loop motif to search for structurally conserved homologs in other subfamilies of GH5, we identified RtCelB. This homolog, originally annotated as a cellulase also possesses mannanase and xylanase activities.

Conclusion

Our studies show that Tmloop enhances GH5 enzyme promiscuity and plays a role in catalysis.

General significance

The study identified a loop of GH5 for mannan recognition and catalysis. Weakening the hydrophobic environment near the loop can also enhance the enzyme catalytic rate. Our findings provide a new insight on mannan recognition and activity enhancement of GH5.  相似文献   

3.
We expressed an active form of CtCel5E (a bifunctional cellulase/xylanase from Clostridium thermocellum), performed biochemical characterization, and determined its apo- and ligand-bound crystal structures. From the structures, Asn-93, His-168, His-169, Asn-208, Trp-347, and Asn-349 were shown to provide hydrogen-bonding/hydrophobic interactions with both ligands. Compared with the structures of TmCel5A, a bifunctional cellulase/mannanase homolog from Thermotoga maritima, a flexible loop region in CtCel5E is the key for discriminating substrates. Moreover, site-directed mutagenesis data confirmed that His-168 is essential for xylanase activity, and His-169 is more important for xylanase activity, whereas Asn-93, Asn-208, Tyr-270, Trp-347, and Asn-349 are critical for both activities. In contrast, F267A improves enzyme activities.  相似文献   

4.
 A gene library of Cellulomonas pachnodae was constructed in Escherichia coli and was screened for endoglucanase activity. Five endoglucanase-positive clones were isolated that carried identical DNA fragments. The gene, designated cel6A, encoding an endoglucanase enzyme, belongs to the glycosyl hydrolase family 6 (cellulase family B). The recombinant Cel6A had a molecular mass of 53 kDa, a pH optimum of 5.5, and a temperature optimum of 50–55 °C. The recombinant endoglucanase Cel6A bound to crystalline cellulose and beech litter. Based on amino acid sequence similarity, a clear cellulose-binding domain was not distinguished. However, the regions in the Cel6A amino acid sequence at the positions 262–319 and 448–473, which did not show similarity to any of the known family-6 glycosyl hydrolases, may be involved in substrate binding. Received: 14 January 1999 / Received revision: 29 March 1999 / Accepted: 6 April 1999  相似文献   

5.
The bacterial strain Paenibacillus xylanilyticus KJ-03 was isolated from a sample of soil used for cultivating Amorphophallus konjac. The cellulase gene, cel5A was cloned using fosmid library and expressed in Escherichia coli BL21 (trxB). The cel5A gene consists of a 1,743 bp open reading frame and encodes 581 amino acids of a protein. Cel5A contains N-terminal signal peptide, a catalytic domain of glycosyl hydrolase family 5, and DUF291 domain with unknown function. The recombinant cellulase was purified by Ni-affinity chromatography. The cellulase activity of Cel5A was detected in clear band with a molecular weight of 64 kDa by zymogram active staining. The maximum activity of the purified enzyme was displayed at a temperature of 40 °C and pH 6.0 when carboxymethyl cellulose was used as a substrate. It has 44% of its maximum activity at 70 °C and retained 66% of its original activity at 45 °C for 1 h. The purified cellulase hydrolyzed avicel, CMC, filter paper, xylan, and 4-methylumbelliferyl β-d-cellobiose, but no activity was detected against p-nitrophenyl β-d-glucoside. The end products of the hydrolysis of cellotetraose and cellopentaose by Cel5A were detected by thin layer chromatography, while enzyme did not hydrolyze cellobiose and cellotriose.  相似文献   

6.
Liu Y  Zhang J  Liu Q  Zhang C  Ma Q 《Current microbiology》2004,49(4):234-238
A thermophilic bacterial strain GXN151 which could degrade Avicel efficiently was isolated and identified as Bacillus licheniformis. A genomic library of GXN151 was constructed and two novel endoglucanase genes designated cel9A and cel12A were isolated by screening the library on carboxylmethyl cellulase indicator plates. The analysis of amino acid sequences deduced from the genes indicated that Cel9A consisted of a catalytic domain belonging to glycosyl hydrolase family 9, a linker domain, and a carbohydrate binding module family 3 from N-terminal to C-terminal; Cel12A had only one catalytic domain belonging to glycosyl hydrolase family 12. The combinations of Cel9A and Cel12A produced by the recombinant E. coli exhibited synergistic action against substrates of carboxylmethyl cellulose as well as Avicel.  相似文献   

7.
The genome of Clostridium thermocellum contains a number of genes for polysaccharide degradation-associated proteins that are not cellulosome bound. The list includes beta-glucanases, glycosidases, chitinases, amylases and a xylanase. One of these 'soluble'-enzyme genes codes for a second glycosyl hydrolase (GH)48 cellulase, Cel48Y, which was expressed in Escherichia coli and biochemically characterized. It is a cellobiohydrolyse with activity on native cellulose such as microcrystalline and bacterial cellulose, and low activity on carboxymethylcellulose. It is about 100 times as active on amorphic cellulose and mixed-linkage barley beta-glucan compared with cellulase Cel9I. The enzyme Cel48Y shows a distinct synergism of 2.1 times with the noncellulosomal processive endoglucanase Cel9I on highly crystalline bacterial cellulose at a 17-fold excess of Cel48Y over Cel9I. These data show that C. thermocellum has, besides the cellulosome, the genes for a second cellulase system for the hydrolysis of crystalline cellulose that is not particle bound.  相似文献   

8.
Three endoglucanase genes (cel5A, cel5B, and cel61A) were cloned from an industrial fungus, Aspergillus kawachii. Yeasts transformed with these cDNAs showed endoglucanase activity in medium. Cel5A and Cel61A contained a type 1 cellulose-binding domain (CBD1) at the C-terminus of the enzyme. The putative catalytic regions of Cel5A and Cel5B showed homology with various endoglucanases belonging glycosyl hydrolase family 5 (GH5). Cel5B showed high homology with Cel5A in catalytic region, but it lacked CBD1 and linker. The cel5A contained four introns, whereas cel5B contained five introns. The putative catalytic region of Cel61A showed homology with enzymes belonging to GH61. The cel61A contained no introns.  相似文献   

9.

Cel6D from Paenibacillus barcinonensis is a modular cellobiohydrolase with a novel molecular architecture among glycosyl hydrolases of family 6. It contains an N-terminal catalytic domain (family 6 of glycosyl hydrolases (GH6)), followed by a fibronectin III-like domain repeat (Fn31,2) and a C-terminal family 3b cellulose-binding domain (CBM3b). The enzyme has been identified and purified showing catalytic activity on cellulosic substrates and cellodextrins, with a marked preference for phosphoric acid swollen cellulose (PASC). Analysis of mode of action of Cel6D shows that it releases cellobiose as the only hydrolysis product from cellulose. Kinetic parameters were determined on PASC showing a K m of 68.73 mg/ml and a V max of 1.73 U/mg. A series of truncated derivatives of Cel6D have been constructed and characterized. Deletion of CBM3b caused a notable reduction in hydrolytic activity, while deletion of the Fn3 domain abolished activity, as the isolated GH6 domain was not active on any of the substrates tested. Mutant enzymes Cel6D-D146A and Cel6D-D97A were constructed in the residues corresponding to the putative acid catalyst and to the network for the nucleophilic attack. The lack of activity of the mutant enzymes indicates the important role of these residues in catalysis. Analysis of cooperative activity of Cel6D with cellulases from the same producing P. barcinonensis strain reveals high synergistic activity with processive endoglucanase Cel9B on hydrolysis of crystalline substrates. The characterized cellobiohydrolase can be a good contribution for depolymerization of cellulosic substrates and for the deconstruction of native cellulose.

  相似文献   

10.
Although cellulases have been isolated from various microorganisms, no functional cellulase gene has been reported in the Vibrio genus until now. In this report, a novel endo-β-1,4-glucanase gene, cel5A, 1,362 bp in length, was cloned from a newly isolated bacterium, Vibrio sp. G21. The deduced protein of cel5A contains a catalytic domain of glycosyl hydrolase family 5 (GH5), followed by a cellulose binding domain (CBM2). The GH5 domain shows the highest sequence similarity (69%) to the bifunctional beta 1,4-endoglucanase/cellobiohydrolase from Teredinibacter turnerae T7902. The mature Cel5A enzyme was overexpressed in Escherichia coli and purified to homogeneity. The optimal pH and temperature of the recombinant enzyme were determined to be 6.5–7.5 and 50°C, respectively. Cel5A was stable over a wide range of pH and retained more than 90% of total activity even after treatment in pH 5.5–10.5 for 1 h, indicating high alkali resistance. Moreover, the enzyme was activated after pretreatment with mild alkali, a novel characteristic that has not been previously reported in other cellulases. Cel5A also showed a high level of salt tolerance. Its activity rose to 1.6-fold in 0.5 M NaCl and remained elevated even in 4 M NaCl. Further experimentation demonstrated that the thermostability of Cel5A was improved in 0.4 M NaCl. In addition, Cel5A showed specific activity towards β-1,4-linkage of amorphous region of lignocellulose, and the main final hydrolysis product of carboxymethylcellulose sodium and cellooligosaccharides was cellobiose. As an alkali-activated and salt-tolerant enzyme, Cel5A is an ideal candidate for further research and industrial applications.  相似文献   

11.
Zhang F  Chen JJ  Ren WZ  Nie GX  Ming H  Tang SK  Li WJ 《Bioresource technology》2011,102(21):10143-10146
The endoglucanase gene, thcel9A, from Thermobifida halotolerans YIM 90462T was cloned and expressed in Escherichia coli BL 21(DE). The 2895-bp full-length gene encodes a 964-residue polypeptide (Thcel9A) containing a catalytic domain belonging to glycosyl hydrolases (GH) family 9. Phylogenetic analysis indicated that Thcel9A is closely related to Cel9A of Thermobifidafusca YX. Thcel9A was purified from the culture supernatant by Ni2+-affinity chromatography and the purified enzyme exhibited optimal activity at 55 °C and pH 8.0. Substrate specificity assays showed that it not only had CMCase activity, but also hydrolase activity on microcrystalline cellulose and filter paper. These properties suggested that Thcel9A is a classical GH9 group A endoglucanase.  相似文献   

12.
The polysaccharide hydrolase activity of a group of selected strains of the genus Aureobasidium pullulans was investigated using a new gel testing assay. A total of 31 strains were tested for alpha-amylase, alpha-glucosidase and glucoamylase, beta-glucosidase, lichenase, cellulase, xylanase and xylosidase, mannanase and mannosidase production during growth of microorganisms on respective meshed polysaccharide gels. Attempts were made to increase the polysaccharide hydrolase activity through selection of some A. pullulans strains by passaging them on the respective modified xylanase- and cellulase-containing gels. The individual saccharide degradation cleavage products were investigated by chromatography.  相似文献   

13.
Cel5 from marine Hahella chejuensis is composed of glycoside hydrolase family-5 (GH5) catalytic domain (CD) and two carbohydrate binding modules (CBM6-2). The enzyme was expressed in Escherichia coli and purified to homogeneity. The optimum endoglucanase and xylanase activities of recombinant Cel5 were observed at 65 °C, pH 6.5 and 55 °C, pH 5.5, respectively. It exhibited K m of 1.8 and 7.1 mg/ml for carboxymethyl cellulose and birchwood xylan, respectively. The addition of Ca2+ greatly improved thermostability and endoglucanase activity of Cel5. The Cel5 retained 90 % of its endoglucanase activity after 24 h incubation in presence of 5 M concentration of NaCl. Recombinant Cel5 showed production of cellobiose after hydrolysis of cellulosic substrates (soluble/insoluble) and methylglucuronic acid substituted xylooligosaccharides after hydrolysis of glucuronoxylans by endo-wise cleavage. These results indicated that Cel5 as bifunctional enzyme having both processive endoglucanase and xylanase activities. The multidomain structure of Cel5 is clearly distinguished from the GH5 bifunctional glycoside hydrolases characterized to date, which are single domain enzymes. Sequence analysis and homology modeling suggested presence of two conserved binding sites with different substrate specificities in CBM6-2 and a single catalytic site in CD. Residues Glu132 and Glu219 were identified as key catalytic amino acids by sequence alignment and further verified by using site directed mutagenesis. CBM6-2 plays vital role in catalytic activity and thermostability of Cel5. The bifunctional activities and multiple substrate specificities of Cel5 can be utilized for efficient hydrolysis of cellulose and hemicellulose into soluble sugars.  相似文献   

14.
The gene encoding a xylanase from Geobacillus sp. 71 was isolated, cloned, and sequenced. Purification of the Geobacillus sp 7.1 xylanase, XyzGeo71, following overexpression in E. coli produced an enzyme of 47 kDa with an optimum temperature of 75°C. The optimum pH of the enzyme is 8.0, but it is active over a broad pH range. This protein showed the highest sequence identity (93%) with the xylanase from Geobacillus thermodenitrificans NG80-2. XyzGeo71 contains a catalytic domain that belongs to the glycoside hydrolase family 10 (GH10). XyzGeo71 exhibited good pH stability, remaining stable after treatment with buffers ranging from pH 7.0 to 11.0 for 6 h. Its activity was partially inhibited by Al3+ and Cu2+ but strongly inhibited by Hg2+. The enzyme follows Michaelis–Menten kinetics, with Km and Vmax values of 0.425 mg xylan/ml and 500 μmol/min.mg, respectively. The enzyme was free from cellulase activity and degraded xylan in an endo fashion. The action of the enzyme on oat spelt xylan produced xylobiose and xylotetrose.  相似文献   

15.
Soil metagenomes represent an unlimited resource for the discovery of novel biocatalysts from soil microorganisms. Three large-inserts metagenomic DNA libraries were constructed from different grassland soil samples and screened for genes conferring cellulase or xylanase activity. Function-driven screening identified a novel cellulase-encoding gene (cel01) and two xylanase-encoding genes (xyn01 and xyn02). From sequence and protein domain analyses, Cel01 (831 amino acids) belongs to glycoside hydrolase family 9 whereas Xyn01 (170 amino acids) and Xyn02 (255 amino acids) are members of glycoside hydrolase family 11. Cel01 harbors a family 9 carbohydrate-binding module, previously found only in xylanases. Both Xyn01 and Xyn02 were most active at 60°C with high activities from 4 to 10 and optimal at pH 7 (Xyn01) and pH 6 (Xyn02). The cellulase gene, cel01, was expressed in E. coli BL21 and the recombinant enzyme (91.9 kDa) was purified. Cel01 exhibited high activity with soluble cellulose substrates containing β-1,4-linkages. Activity with microcrystalline cellulose was not detected. These data, together with the analysis of the degradation profiles of carboxymethyl cellulose and barley glucan indicated that Cel01 is an endo 1,4-β-glucanase. Cel01 showed optimal activity at 50°C and pH 7 being highly active from pH range 5 to 9 and possesses remarkable halotolerance.  相似文献   

16.
A unique multifunctional glycosyl hydrolase was discovered by screening an environmental DNA library prepared from a microbial consortium collected from cow rumen. The protein consists of two adjacent catalytic domains. Sequence analysis predicted that one domain conforms to glycosyl hydrolase family 5 and the other to family 26. The enzyme is active on several different β-linked substrates and possesses mannanase, xylanase, and glucanase activities. Site-directed mutagenesis studies on the catalytic residues confirmed the presence of two functionally independent catalytic domains. Using site-specific mutations, it was shown that one catalytic site hydrolyzes β-1,4-linked mannan substrates, while the second catalytic site hydrolyzes β-1,4-linked xylan and β-1,4-linked glucan substrates. Polysaccharide Analysis using Carbohydrate gel Electrophoresis (PACE) also confirmed that the enzyme has discrete domains for binding and hydrolysis of glucan- and mannan-linked polysaccharides. Such multifunctional enzymes have many potential industrial applications in plant processing, including biomass saccharification, animal feed nutritional enhancement, textile, and pulp and paper processing.  相似文献   

17.
The enzyme diversity of the cellulolytic system produced by Clostridium cellulolyticum grown on crystalline cellulose as a sole carbon and energy source was explored by two-dimensional electrophoresis. The cellulolytic system of C. cellulolyticum is composed of at least 30 dockerin-containing proteins (designated cellulosomal proteins) and 30 noncellulosomal components. Most of the known cellulosomal proteins, including CipC, Cel48F, Cel8C, Cel9G, Cel9E, Man5K, Cel9M, and Cel5A, were identified by using two-dimensional Western blot analysis with specific antibodies, whereas Cel5N, Cel9J, and Cel44O were identified by using N-terminal sequencing. Unknown enzymes having carboxymethyl cellulase or xylanase activities were detected by zymogram analysis of two-dimensional gels. Some of these enzymes were identified by N-terminal sequencing as homologs of proteins listed in the NCBI database. Using Trap-Dock PCR and DNA walking, seven genes encoding new dockerin-containing proteins were cloned and sequenced. Some of these genes are clustered. Enzymes encoded by these genes belong to glycoside hydrolase families GH2, GH9, GH10, GH26, GH27, and GH59. Except for members of family GH9, which contains only cellulases, the new modular glycoside hydrolases discovered in this work could be involved in the degradation of different hemicellulosic substrates, such as xylan or galactomannan.  相似文献   

18.
An enzyme that has both β-1,4-glucanase and chitosanase activities was found in the culture medium of the soil bacterium Lysobacter sp. IB-9374, a high lysyl endopeptidase-producing strain. The enzyme was purified to homogeneity from the culture filtrate using five purification steps and designated Cel8A. The purified Cel8A had a molecular mass of 41 kDa, as estimated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis. A pH optimum of 5.0 was found for the β-1,4-glucanase activity, and pH optima of 5.0 and 7.0 were found for the chitosanase activity. Nucleotide sequencing of the Cel8A gene yielded a deduced amino acid sequence that comprises a 33-amino acid, N-terminal signal peptide and a mature enzyme consisting of a 381-residue polypeptide with a predicted molecular mass of 41,241 Da. The amino acid sequence of the Cel8A, which contains the catalytic module of glycosyl hydrolase family 8, is homologous to β-1,3-1,4-D-glucanase from Bacillus circulans WL-12 and endoglucanase N-257 from B. circulans KSM-N257.  相似文献   

19.
In this study, we purified and molecularly characterized a cold-active β-galactosidase from Arthrobacter psychrolactophilus strain F2. The purified β-galactosidase from strain F2 exhibited high activity at 0°C, and its optimum temperature and pH were 10°C and 8.0, respectively. It was possible to inactivate the β-galactosidase rapidly at 45°C in 5 min. The enzyme was able to hydrolyze lactose as a substrate, as well as o-nitrophenyl-β-d-galactopyranoside (ONPG), the K m values with ONPG and lactose being calculated to be 2.8 mM and 50 mM, respectively, at 10°C. Moreover, the bglA gene encoding the β-galactosidase of strain F2 was cloned and analyzed. The bglA gene consists of a 3,084-bp open reading frame corresponding to a protein of 1,028 amino acid residues. BglAp, the gene product derived from bglA, had several conserved regions for glycosyl hydrolase family 2, e.g., the glycosyl hydrolase 2 (GH2) sugar binding domain, GH2 acid-base catalyst, GH2 triosephosphate isomerase barrel domain, GH2 signature 1, and several other GH2 conserved regions. From these facts, we conclude that the β-galactosidase from A. psychrolactophilus strain F2, which is a new member of glycosyl hydrolase family 2, is a cold-active enzyme that is extremely heat labile and could have advantageous applications in the food industry.  相似文献   

20.
This study aimed to isolate and characterize a novel cellulolytic enzyme from black goat rumen by using a culture-independent approach. A metagenomic fosmid library was constructed from black goat rumen contents and screened for a novel cellulase. The KG37 gene encoding a protein of 858 amino acid residues (92.7 kDa) was isolated. The deduced protein contained a glycosyl hydrolase family 74 (GH74) domain and showed 77% sequence identity to two endo-1,4-β-glucanases from Fibrobacter succinogenes. The novel GH74 cellulase gene was overexpressed in Escherichia coli, and its protein product was functionally characterized. The recombinant GH74 cellulase showed a broad substrate spectrum. The enzyme exhibited its optimum activity at pH 5.0 and temperature range of 20–50 °C. The enzyme was thermally stable at pH 5.0 and at a temperature of 20–40 °C. The novel GH74 cellulase can be practically exploited to convert lignocellulosic biomass to value-added products in various industrial applications in future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号