首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two serine protease inhibitors, phenylmethanesulfonyl fluoride (PMSF) and diisopropylfluorophosphate (DFP), were utilized to investigate the possible involvement of serine hydroxyl groups on 17 beta-estradiol binding to the rat estrogen receptor (ER). Single point saturation analysis and Scatchard analysis demonstrated that both 5 mM PMSF and 5 mM DFP were able to inhibit steroid binding to the ER after incubation at 37 degrees C, but neither were able to inhibit steroid binding of the nonactivated ER (0-4 degrees C). The reducing agent dithiothreitol (DTT) was used to differentiate between the interaction of PMSF with serine groups or with sulfhydryl groups of the receptor. When incubated in the presence of 5 mM PMSF, various concentrations of DTT up to 25 mM were not able to overcome the inhibition of this agent, indicating that there was no interaction of PMSF with sulfhydryl groups. Thus, these findings indicate that serine hydroxyl groups are involved in steroid binding of the rat ER.  相似文献   

2.
In isolated rat adipocytes, tumour-promoting phorbol esters caused (1) dose-dependent stimulation of lipogenesis in the absence of insulin and (2) inhibition of the lipogenic effect of submaximal concentrations of insulin, but without affecting insulin binding. The possible involvement of protein kinase C in insulin action is discussed.  相似文献   

3.
4.
Lipopolysaccharide (LPS) elicits a strong immune response, which leads to the release of inflammatory cytokines. Increased cytokine production has been shown to impair insulin-mediated glucose disposal. LPS can alter other factors, such as muscle blood flow and insulin signaling in the myocyte, that can influence glucose disposal. We hypothesize that LPS induced impairments in cardiovascular function contribute to the associated impairments in insulin action in vivo. Male wild-type C57BL/6J mice had a catheter implanted in the jugular vein for infusions and the carotid artery for sampling 5 days prior to the hyperinsulinemic-euglycemic clamp. Mice were treated with vehicle, low- (1 ug/gBW) or high-dose (10 ug/gBW) LPS 4 hours prior to the clamp. Muscle glucose uptake (MGU) was assessed using [2-(14)C] deoxyglucose. While both low- and high-dose LPS inhibited insulin-stimulated MGU compared to vehicle-treated mice, the impairment was more significant with the high-dose treatment (~25% in soleus and ~70% in both gastrocnemius and vastus lateralis). Interestingly, insulin signaling through the PI3-kinase pathway in the muscle was not affected by this treatment suggesting that the decrease in MGU is not directly due to impairments in muscle insulin action. Echocardiography demonstrated that high-dose LPS treatment significantly decreased stroke volume (~30%), heart rate (~35%), and cardiac output (~50%). These observations were not seen with vehicle or low-dose LPS treatment. High-dose LPS treatment also significantly decreased muscle blood flow (~70%) and whole body oxygen consumption (~50%). Thus, in vivo acute endotoxemia does not impair insulin signaling through the PI3-kinase pathway in skeletal muscle and decreased tissue blood flow likely plays a central role in the impairment of glucose uptake in the muscle.  相似文献   

5.
Shc and insulin receptor substrate 1 (IRS-1) are cytoplasmic substrates of tyrosine kinase receptors that engage, localize, and activate downstream SH2 enzymes. Each contains a phosphotyrosine-binding (PTB) domain that is structurally unrelated to SH2 domains. We have designed high-affinity, cellular inhibitors of the Shc PTB domain by incorporating nonnatural, phosphatase-resistant amino acids into short peptides. None of the inhibitors bind the IRS-1 PTB domain, consistent with distinct specificities for domains. The best inhibitor of the Shc domain was introduced by electroporation into Rat1 fibroblasts that express human insulin receptors. Insulin-stimulated phosphorylation of Shc was inhibited, with no effect on IRS-1, and downstream effects on mitogen-activated protein kinase and DNA synthesis were both inhibited. The PTB domain inhibitor had less influence on epidermal growth factor-induced effects and essentially no impact on serum- or phorbol ester-induced effects. The inhibitor did not affect insulin internalization and its degradation. We conclude that the PTB domain of Shc is critical for its phosphorylation by the insulin receptor, that Shc is an important mediator of insulin's mitogenic effects, and that Shc is not central to insulin receptor cycling in these cells. PTB domains can be inhibited selectively in cells and represent potential targets for drug discovery.  相似文献   

6.
7.
Sheldon AL  Zhang J  Fei H  Levitan IB 《PloS one》2011,6(8):e23343
There is ample evidence that ion channel modulation by accessory proteins within a macromolecular complex can regulate channel activity and thereby impact neuronal excitability. However, the downstream consequences of ion channel modulation remain largely undetermined. The Drosophila melanogaster large conductance calcium-activated potassium channel SLOWPOKE (SLO) undergoes modulation via its binding partner SLO-binding protein (SLOB). Regulation of SLO by SLOB influences the voltage dependence of SLO activation and modulates synaptic transmission. SLO and SLOB are expressed especially prominently in median neurosecretory cells (mNSCs) in the pars intercerebralis (PI) region of the brain; these cells also express and secrete Drosophila insulin like peptides (dILPs). Previously, we found that flies lacking SLOB exhibit increased resistance to starvation, and we reasoned that SLOB may regulate aspects of insulin signaling and metabolism. Here we investigate the role of SLOB in metabolism and find that slob null flies exhibit changes in energy storage and insulin pathway signaling. In addition, slob null flies have decreased levels of dilp3 and increased levels of takeout, a gene known to be involved in feeding and metabolism. Targeted expression of SLOB to mNSCs rescues these alterations in gene expression, as well as the metabolic phenotypes. Analysis of fly lines mutant for both slob and slo indicate that the effect of SLOB on metabolism and gene expression is via SLO. We propose that modulation of SLO by SLOB regulates neurotransmission in mNSCs, influencing downstream insulin pathway signaling and metabolism.  相似文献   

8.
With the increasing prevalence of obesity, research has focused on the molecular mechanism(s) linking obesity and skeletal muscle insulin resistance. Metabolic alterations within muscle, such as changes in the cellular location of fatty acid transporter proteins, decreased mitochondrial enzyme activity, and defects in mitochondrial morphology, likely contribute to obesity and insulin resistance. These defects are thought to play a role in the reduced skeletal muscle fatty acid oxidation and increased intramuscular lipid (IMCL) accumulation that is apparent with obesity and other insulin-resistant states such as type 2 diabetes. Intramuscular triacylglycerol does not appear to be a ubiquitous marker of insulin resistance, although specific IMCL intermediates such as long-chain fatty acyl-CoAs, ceramide, and diacylglycerol may inhibit insulin signal transduction. In this review, we will briefly summarize the defects in skeletal muscle lipid metabolism associated with obesity, and discuss the proposed mechanisms by which these defects may contribute to insulin resistance.  相似文献   

9.
Evidence has been accumulating that nuclear lipid metabolism is involved in the regulation of nuclear functions. Here I describe an autonomous nuclear lipid signaling that has been found to be associated with the metabolism of such lipids as phosphoinositides, choline phospholipids, and the acylation and deacylation cycle. Some lipid signals from the plasma membrane ultimately reach the nucleus and regulate the nuclear function. In this case, however, generated lipids and their metabolites may not directly act on the nuclear factors involved in nuclear function. The unique and direct effects of nuclear lipids and their metabolites on nuclear factors are also discussed.  相似文献   

10.
Ser/Thr phosphorylation of insulin receptor substrate IRS-1 regulates insulin signaling, but the relevant phosphorylated residues and their potential functions during insulin-stimulated signal transduction are difficult to resolve. We used a sequence-specific polyclonal antibody directed against phosphorylated Ser(302) to study IRS-1-mediated signaling during insulin and insulin-like growth factor IGF-I stimulation. Insulin or IGF-I stimulated phosphorylation of Ser(302) in various cell backgrounds and in murine muscle. Wortmannin or rapamycin inhibited Ser(302) phosphorylation, and amino acids or glucose stimulated Ser(302) phosphorylation, suggesting a role for the mTOR cascade. The Ser(302) kinase associates with IRS-1 during immunoprecipitation, but its identity is unknown. The NH(2)-terminal c-Jun kinase did not phosphorylate Ser(302). Replacing Ser(302) with alanine significantly reduced insulin-stimulated tyrosine phosphorylation of IRS-1 and p85 binding and reduced insulin-stimulated phosphorylation of p70(S6K), ribosomal S6 protein, and 4E-BP1; however, this mutation had no effect on insulin-stimulated Akt or glycogen synthase kinase 3beta phosphorylation. Replacing Ser(302) with alanine reduced insulin/IGF-I-stimulated DNA synthesis. We conclude that Ser(302) phosphorylation integrates nutrient availability with insulin/IGF-I signaling to promote mitogenesis and cell growth.  相似文献   

11.
12.
Benzyl alcohol and ethanol, at aqueous concentrations that cause local anesthesia of rat sciatic nerve, affect structural and functional properties of rat adipocytes. The data strongly suggest that structurally-intact membrane lipids are required for the proper cellular uptake of glucose and for the physiologic response of adipocytes to insulin. The structure of adipocyte membrane lipids was examined with the spin label method. Isolated adipocyte ‘ghost’ membranes were labeled with the 5-nitroxide stearate spin probe I(12,3). Order parameters that are sensitive to the fluidity of the lipid environment of the incorporated probe were calculated from ESR spectra of labeled membranes. Benzyl alcohol and ethanol dramatically increased the fluidity of the adipocyte ghost membrane, as indicated by decreases in the polarity-corrected order parameter S. This concentration-dependent fluidization commenced at approx. 10 mM benzyl alcohol and progressively increased at all higher concentrations tested (up to 107 mM). S decreased approx. 5.7% at 40 mM benzyl alcohol, a change in S comparable in magnitude to that induced by a 6°C increase in the incubation temperature. Benzyl alcohol and ethanol inhibited basal glucose uptake in adipocytes and uptake maximally stimulated by insulin. Temperature-induced increases in membrane fluidity, detected with 1(12,3), that closely paralleled the fluidity effects of alcohols were associated only with increases in basal and insulin-stimulated glucose uptake. The contention that the membrane lipid fluidity plays a role in insulin action needs further study.  相似文献   

13.
The effects of prostaglandin E2 were studied on glucose metabolism (3-O-methylglucose transport, CO2 production and lipogenesis) in human adipocytes. Initially, the effects of endogenously produced adenosine and prostaglandins were indirectly demonstrated by using adenosine deaminase and indomethacin in the incubations. From these studies it was found that adenosine deaminase (5 micrograms/ml) had a pronounced effect on adipocyte glucose metabolism in vitro. In the basal (nonhormonal-stimulated) state, glucose transport, CO2 production and lipogenesis were inhibited by about 30% (P less than 0.05). Furthermore, adenosine deaminase significantly inhibited the isoproterenol- and insulin-stimulated CO2 production and lipogenesis (P less than 0.01). Indomethacin (50 microM) had a consistently inhibitory effect on the insulin-stimulated CO2 production (P less than 0.05), whereas indomethacin had no significant effects on basal or isoproterenol-stimulated glucose metabolism. In contrast to the relatively minor effect of endogenous prostaglandins, the addition of exogenous prostaglandin E2 significantly stimulated the glucose transport, glucose oxidation and lipogenesis in human adipocytes, especially in the presence of adenosine deaminase. Half-maximal stimulation was obtained at prostaglandin E2 concentrations of 2.2, 0.8 and 0.8 nM, respectively. The effect of prostaglandin E2 was specific, since the structurally related prostaglandin, prostaglandin F2 alpha, had practically no effect on glucose metabolism. The maximal effect of prostaglandin E2 (1 microM) on glucose metabolism was 30-35% of the maximal insulin (1 nM) effect. When insulin and prostaglandin E2 were added together, the effect of prostaglandin E2 on glucose metabolism was additive at all insulin concentrations tested.  相似文献   

14.
The effects of protease inhibitors on axon growth through astrocytes   总被引:1,自引:0,他引:1  
We have shown in a previous paper (Devl Biol. 135, 449, 1989) that axons regenerating from postnatal neurons are unable to penetrate three-dimensional cultures of mature astrocytes, while axons from embryonic dorsal root ganglia (DRGs) and retina will grow through such cultures for considerable distances. We have now investigated the role of proteases in the penetration of three-dimensional astrocyte cultures by axons from embryonic DRGs. Embryonic DRGs were grown in association with three-dimensional astrocyte cultures, with astrocyte monolayers, and with-air dried collagen. The effects of inhibitors of the three families of proteases that have been shown to be involved in tumour cell invasion were investigated. The serine protease inhibitors EACA and Trasylol both reduced growth in three-dimensional astrocyte cultures to around 50% of control, but had little effect on growth on astrocyte monolayers or on collagen. TIMP, which inhibits collagenases, had no effect on growth on two- or three-dimensional cultures. Cbz-gly-phen-amide, an inhibitor of enteroproteases, reduced growth in all three types of culture.  相似文献   

15.
16.
Effects of HIV protease inhibitor therapy on lipid metabolism   总被引:1,自引:0,他引:1  
Highly active antiretroviral therapy, which includes a combination of protease inhibitors, is highly successful in controlling human immunodeficiency virus (HIV) infection and reducing the morbidity and mortality of autoimmune deficiency syndrome (AIDS). However, the benefits of HIV protease inhibitors are compromised by numerous undesirable side effects. These include peripheral fat wasting and excessive central fat deposition (lipodystrophy), overt hyperlipidemia, and insulin resistance. The mechanism associated with protease inhibitor-induced metabolic abnormalities is multifactorial. One major effect of the protease inhibitor is its suppression of the breakdown of the nuclear form of sterol regulatory element binding proteins (nSREBP) in the liver and adipose tissues. Hepatic accumulation of nSREBP results in increased fatty acid and cholesterol biosynthesis, whereas nSREBP accumulation in adipose tissue causes lipodystrophy, reduces leptin expression, and promotes insulin resistance. The HIV protease inhibitors also suppress proteasome-mediated breakdown of nascent apolipoprotein (apo) B, thus resulting in the overproduction and secretion of triglyceride-rich lipoproteins. Finally, protease inhibitor also suppresses the inhibition of the glucose transporter GLUT-4 activity in adipose and muscle. This latter effect also contributes directly to insulin resistance and diabetes. These adverse effects need to be alleviated for long-term use of protease inhibitor therapy in treatment of HIV infection.  相似文献   

17.
Skeletal muscle insulin resistance may be aggravated by intramyocellular accumulation of fatty acid-derived metabolites that inhibit insulin signaling. We tested the hypothesis that enhanced fatty acid oxidation in myocytes should protect against fatty acid-induced insulin resistance by limiting lipid accumulation. L6 myotubes were transduced with adenoviruses encoding carnitine palmitoyltransferase I (CPT I) isoforms or beta-galactosidase (control). Two to 3-fold overexpression of L-CPT I, the endogenous isoform in L6 cells, proportionally increased oxidation of the long-chain fatty acids palmitate and oleate and increased insulin stimulation of [(14)C]glucose incorporation into glycogen by 60% while enhancing insulin-stimulated phosphorylation of p38MAPK. Incubation of control cells with 0.2 mm palmitate for 18 h caused accumulation of triacylglycerol, diacylglycerol, and ceramide (but not long-chain acyl-CoA) and decreased insulin-stimulated [(14)C]glucose incorporation into glycogen (60%), [(3)H]deoxyglucose uptake (60%), and protein kinase B phosphorylation (20%). In the context of L-CPT I overexpression, palmitate preincubation produced a relative decrease in insulin-stimulated incorporation of [(14)C]glucose into glycogen (60%) and [(3)H]deoxyglucose uptake (40%) but did not inhibit phosphorylation of protein kinase B. Due to the enhancement of insulin-stimulated glucose metabolism induced by L-CPT I overexpression itself, net insulin-stimulated incorporation of [(14)C]glucose into glycogen and [(3)H]deoxyglucose uptake in L-CPT I-transduced, palmitate-treated cells were significantly greater than in palmitate-treated control cells (71 and 75% greater, respectively). However, L-CPT I overexpression failed to decrease intracellular triacylglycerol, diacylglycerol, ceramide, or long-chain acyl-CoA. We propose that accelerated beta-oxidation in muscle cells exerts an insulin-sensitizing effect independently of changes in intracellular lipid content.  相似文献   

18.
19.
Insulin is the main anabolic hormone secreted by β-cells of the pancreas stimulating the assimilation and storage of glucose in muscle and fat cells. It modulates the postprandial balance of carbohydrates, lipids and proteins via enhancing lipogenesis, glycogen and protein synthesis and suppressing glucose generation and its release from the liver. Resistance to insulin is a severe metabolic disorder related to a diminished response of peripheral tissues to the insulin action and signaling. This leads to a disturbed glucose homeostasis that precedes the onset of type 2 diabetes (T2D), a disease reaching epidemic proportions. A large number of studies reported an association between elevated circulating fatty acids and the development of insulin resistance. The increased fatty acid lipid flux results in the accumulation of lipid droplets in a variety of tissues. However, lipid intermediates such as diacylglycerols and ceramides are also formed in response to elevated fatty acid levels. These bioactive lipids have been associated with the pathogenesis of insulin resistance. More recently, sphingosine 1-phosphate (S1P), another bioactive sphingolipid derivative, has also been shown to increase in T2D and obesity. Although many studies propose a protective role of S1P metabolism on insulin signaling in peripheral tissues, other studies suggest a causal role of S1P on insulin resistance. In this review, we critically summarize the current state of knowledge of S1P metabolism and its modulating role on insulin resistance. A particular emphasis is placed on S1P and insulin signaling in hepatocytes, skeletal muscle cells, adipocytes and pancreatic β-cells. In particular, modulation of receptors and enzymes that regulate S1P metabolism can be considered as a new therapeutic option for the treatment of insulin resistance and T2D.  相似文献   

20.
The non-specific binding of a drug to plasma proteins is an important determinant of its biological efficacy since it modulates the availability of the drug to its intended target. In the case of HIV-1 protease inhibitors, binding to human serum albumin (HSA) and alpha(1)-acid glycoprotein (AAG) appears to be an important modulator of drug bioavailability. From a thermodynamic point of view, the issue of drug availability to the desired target can be formulated as a multiple equilibrium problem in which a ligand is able to bind to different proteins or other macromolecules with different binding affinities. Previously, we have measured the binding thermodynamics of HIV-1 protease inhibitors to their target. In this article, the binding energetics of four inhibitors currently in clinical use (saquinavir, indinavir, ritonavir and nelfinavir) and a second-generation inhibitor (KNI-764) to human HSA and AAG has been studied by isothermal titration calorimetry. All inhibitors exhibited a significant affinity for AAG (K(a) approximately 0.5-10 x 10(5) M(-1)) and a relatively low affinity for HSA (K(a) approximately 5-15 x 10(3) M(-1)). It is shown that under conditions that simulate in vivo concentrations of serum proteins, the inhibitor concentrations required to achieve 95% protease inhibition can be up to 10 times higher than those required in the absence of serum proteins. The effect is compounded in patients infected with drug resistant HIV-1 strains that exhibit a lower affinity for protease inhibitors. In these cases the required inhibitor concentrations can be up to 2000 times higher and beyond the solubility limits of the inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号