首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genome-wide linkage disequilibrium in two Japanese beef cattle breeds   总被引:4,自引:0,他引:4  
There is little knowledge about the degree of linkage disequilibrium (LD) in beef cattle. This study aims to perform a genome-wide search for LD in Japanese Black and Japanese Brown beef cattle and to compare the level of LD between these two breeds. Parameter D' (the LD coefficient) was used as a measure of LD, and LD was tested for significance of allelic associations between syntenic and between non-syntenic marker pairs. Effects of breed, chromosome, genetic map distance and their interactions with D' were tested based on least squares analyses. Both breeds showed high levels of LD, which ranged over several tens of cM and declined as the marker distance increased for syntenic marker pairs. A rapid decline of the D' value was observed between markers that were spaced 5 and 20 cM apart. LD was significant in most cases for marker pairs <40 cM apart but was not significant between non-syntenic loci. The pattern of LD found in these two breeds was similar to that previously published for dairy cattle. The D' value between breeds was not significantly different (P > 0.05), but the interaction between breed and chromosome was highly significant (P < 0.001). Genetic selection seems to have caused the heterogeneity of the D' values among chromosomes within breed. These results indicate that LD mapping is a useful tool for fine-mapping quantitative trait loci of economically important traits in Japanese beef cattle.  相似文献   

2.
OBJECTIVES: To better understand the effect of admixture on long range linkage disequilibrium (LD), we characterized extended LD in gene-rich regions of an African-American population. METHODS: Approximately 290 cM of chromosomes 1, 3, 6, 11-17, 20 and 22 were scanned using 109 polymorphic microsatellite markers spaced an average of 3 cM apart. Disequilibrium between loci (D') was based on maximum-likelihood estimates of haplotype frequencies computed for 200 unrelated African Americans. RESULTS: Mean D' values were highest on chromosomes 6p23-p21.3 (D' = 0.33) and 15p22.2-p25.3 (D' = 0.34), and lowest on chromosome 12p11.2-q14 (D' = 0.21). Overall, the variance in LD among chromosomes accounted for approximately two-thirds of the total LD variance. Of the 434 locus pairs spaced between 0.3 and 38.7 cM apart, there was no detectable correlation between LD and recombination distance and a weak negative correlation between LD and physical distance (r(s) = -0.12; p = 0.031). For the 192 intrachromosomal locus pairs where allele frequency data were available from the Centre d'Etude du Polymorphisme humain (CEPH), we found a statistically significant positive correlation between LD and the allelic frequency differences (delta) between the African-American study population and Caucasian reference CEPH population (r(s) = 0.53; p < 0.0001). The correlation between LD and both recombination and physical distance was markedly increased for locus pairs with high delta levels. CONCLUSIONS: Our results suggest that recent Caucasian admixture maintains a high level of long range LD in African Americans on a genomic scale, and selected markers with large African American/Caucasian delta levels may be useful in association studies.  相似文献   

3.
Linkage disequilibrium in domestic sheep   总被引:15,自引:0,他引:15  
McRae AF  McEwan JC  Dodds KG  Wilson T  Crawford AM  Slate J 《Genetics》2002,160(3):1113-1122
The last decade has seen a dramatic increase in the number of livestock QTL mapping studies. The next challenge awaiting livestock geneticists is to determine the actual genes responsible for variation of economically important traits. With the advent of high density single nucleotide polymorphism (SNP) maps, it may be possible to fine map genes by exploiting linkage disequilibrium between genes of interest and adjacent markers. However, the extent of linkage disequilibrium (LD) is generally unknown for livestock populations. In this article microsatellite genotype data are used to assess the extent of LD in two populations of domestic sheep. High levels of LD were found to extend for tens of centimorgans and declined as a function of marker distance. However, LD was also frequently observed between unlinked markers. The prospects for LD mapping in livestock appear encouraging provided that type I error can be minimized. Properties of the multiallelic LD coefficient D' were also explored. D' was found to be significantly related to marker heterozygosity, although the relationship did not appear to unduly influence the overall conclusions. Of potentially greater concern was the observation that D' may be skewed when rare alleles are present. It is recommended that the statistical significance of LD is used in conjunction with coefficients such as D' to determine the true extent of LD.  相似文献   

4.
Knowledge of the extent and range of linkage disequilibrium (LD), defined as non-random association of alleles at two or more loci, in animal populations is extremely valuable in localizing genes affecting quantitative traits, identifying chromosomal regions under selection, studying population history, and characterizing/managing genetic resources and diversity. Two commonly used LD measures, r(2) and D', and their permutation based adjustments, were evaluated using genotypes of more than 6,000 pigs from six commercial lines (two terminal sire lines and four maternal lines) at ~4,500 autosomal SNPs (single nucleotide polymorphisms). The results indicated that permutation only partially removed the dependency of D' on allele frequency and that r(2) is a considerably more robust LD measure. The maximum r(2) was derived as a function of allele frequency. Using the same genotype dataset, the extent of LD in these pig populations was estimated for all possible syntenic SNP pairs using r(2) and the ratio of r(2) over its theoretical maximum. As expected, the extent of LD highest for SNP pairs was found in tightest linkage and decreased as their map distance increased. The level of LD found in these pig populations appears to be lower than previously implied in several other studies using microsatellite genotype data. For all pairs of SNPs approximately 3 centiMorgan (cM) apart, the average r(2) was equal to 0.1. Based on the average population-wise LD found in these six commercial pig lines, we recommend a spacing of 0.1 to 1 cM for a whole genome association study in pig populations.  相似文献   

5.
Large-scale studies of linkage disequilibrium (LD) have shown considerable variation in the extent and distribution of pairwise LD within and between populations. Taken at face value, these results suggest that genomewide LD maps for one population may not be generalizable to other populations. However, at least part of this diversity is due to some undesirable features of pairwise LD measures, which are well documented for the D' and r2 measures. In this report, we compare patterns of LD derived from pairwise measures with statistical estimates of population recombination rates ( rho ) along a 10-Mb stretch of chromosome 20 in four population samples, comprising East Asians, African Americans, and U.K. and U.S. individuals of western European descent. The results reveal the expected variability of D' within and between populations but show better concordance in estimates of r2 for the same markers across the population samples. Estimates of rho correlate well across populations, but there is still evidence of population-specific spikes and troughs in rho values. We conclude that it is unlikely that a single haplotype map will provide a definitive guide for association studies of many populations; rather, multiple maps will need to be constructed to provide the best-possible guides for gene mapping.  相似文献   

6.
Gordon D  Simonic I  Ott J 《Genomics》2000,66(1):87-92
We explore the extent of deviations from Hardy-Weinberg equilibrium (HWE) at a marker locus and linkage disequilibrium (LD) between pairs of marker loci in the Afrikaner population of South Africa. DNA samples were used for genotyping of 23 loci on six chromosomes. The samples were collected from 91 healthy unrelated Afrikaner adults. Exact tests were used to determine evidence for deviations from HWE at a single marker locus or LD between pairs of marker loci. At the 0.05 level of significance, evidence was found for deviation from HWE at only one of the 23 loci. At the same level of significance, LD was found among 8 of the 34 intrachromosomal pairs of loci. On chromosome 21, there was evidence for LD (P = 0.02) between a pair of loci with a genetic distance of 5.51 cM. On chromosome 2, there was evidence for LD between a pair of loci with a genetic distance of 5.28 cM (P = 0.002) and a pair of loci with a genetic distance of 3.68 cM (P = 0.0004). Detailed analysis of LD for one locus pair indicated that only a few of all alleles participated in the LD and that strong LD was most often positive. Our findings indicate that Afrikaans-speaking Afrikaners represent one of those special populations deemed particularly suitable for disequilibrium mapping.  相似文献   

7.
Piganeau G  Eyre-Walker A 《Heredity》2004,92(4):282-288
In an attempt to resolve the controversy about whether recombination occurs in human mtDNA, we have analysed three recently published data sets of complete mtDNA sequences along with 10 RFLP data sets. We have analysed the relationship between linkage disequilibrium (LD) and distance between sites under a variety of conditions using two measures of LD, r2 and /D'/. We find that there is a negative correlation between r2 and distance in the majority of data sets, but no overall trend for /D'/. Five out of six mtDNA sequence data sets show an excess of homoplasy, but this could be due to either recombination or hypervariable sites. Two additional recombination detection methods used, Geneconv and Maximum Chi-Square, showed nonsignificant results. The overall significance of these findings is hard to quantify because of nonindependence, but our results suggest a lack of evidence for recombination in human mtDNA.  相似文献   

8.
Whole-genome association studies will be a powerful tool to identify genes responsible for common human diseases. A crucial task for association-mapping studies is the evaluation of the relationship between linkage disequilibrium (LD) and physical distance for the genomic region under study. Since it is known that the extent of LD is nonuniformly distributed throughout the human genome, the required marker density has to be determined specifically for the region under study. These regions may be related to isochores and chromosomal bands, as indicated by earlier cytogenetic findings concerning chiasma distribution in meiosis. Therefore we analyzed the neurofibromatosis type 1 (NF1) gene region on chromosome 17q11.2, which is characterized by a nonuniform LD pattern and an L1-to-H2 isochore transition. Long-range LD within the NF1 gene was found to extend over 200 kb (D' = 0.937) in the L1 isochore, whereas, in the neighboring H2 isochore, no LD is apparent between markers spaced by 26 kb (D' = 0.144). Recombination frequencies derived from the LD are at.00019 (high LD) and.01659 (low LD) per megabase, the latter identical to the average value from segregation analysis. The boundary between these regions coincides precisely with a transition in the GC content of the sequences, with low values (37.2%) in the region with long-range LD and high values (51%) in the other. Our results suggest a correlation between the LD pattern and the isochores, at least in the NF1 region. If this correlation can be generalized, the marker densities required for association studies have to be adjusted to the regional GC content and may be chosen according to the isochores.  相似文献   

9.
The design and feasibility of whole-genome-association studies are critically dependent on the extent of linkage disequilibrium (LD) between markers. Although there has been extensive theoretical discussion of this, few empirical data exist. The authors have determined the extent of LD among 38 biallelic markers with minor allele frequencies >.1, since these are most comparable to the common disease-susceptibility polymorphisms that association studies aim to detect. The markers come from three chromosomal regions-1,335 kb on chromosome 13q12-13, 380 kb on chromosome 19q13.2, and 120 kb on chromosome 22q13.3-which have been extensively mapped. These markers were examined in approximately 1,600 individuals from four populations, all of European origin but with different demographic histories; Afrikaners, Ashkenazim, Finns, and East Anglian British. There are few differences, either in allele frequencies or in LD, among the populations studied. A similar inverse relationship was found between LD and distance in each genomic region and in each population. Mean D' is.68 for marker pairs <5 kb apart and is.24 for pairs separated by 10-20 kb, and the level of LD is not different from that seen in unlinked marker pairs separated by >500 kb. However, only 50% of marker pairs at distances <5 kb display sufficient LD (delta>.3) to be useful in association studies. Results of the present study, if representative of the whole genome, suggest that a whole-genome scan searching for common disease-susceptibility alleles would require markers spaced < or = 5 kb apart.  相似文献   

10.
OBJECTIVES: Describe the inflation in nonparametric multipoint LOD scores due to inter-marker linkage disequilibrium (LD) across many markers with varied allele frequencies. METHOD: Using simulated two-generation families with and without parents, we conducted nonparametric multipoint linkage analysis with 2 to 10 markers with minor allele frequencies (MAF) of 0.5 and 0.1. RESULTS: Misspecification of population haplotype frequencies by assuming linkage equilibrium caused inflated multipoint LOD scores due to inter-marker LD when parental genotypes were not included. Inflation increased as more markers in LD were included and decreased as markers in equilibrium were added. When marker allele frequencies were unequal, the r2 measure of LD was a better predictor of inflation than D'. CONCLUSION: This observation strongly supports the evaluation of LD in multipoint linkage analyses, and further suggests that unaccounted for LD may be suspected when two-point and multipoint linkage analyses show a marked disparity in regions with elevated r2 measures of LD. Given the increasing popularity of high-density genome-wide SNP screens, inter-marker LD should be a concern in future linkage studies.  相似文献   

11.
The allelic association or linkage disequilibrium between two loci is a parameter of fundamental interest in modern population genetics for evolutionary inference and association mapping studies. Among the many measures available, the optimal measure of allelic association rho presents a strong evolutionary theory basis and is modeled on the physical distance along the chromosome with the Malécot equation for isolation by distance. Moreover, rho is equal to the absolute value of D', the standardized measure of gametic disequilibrium. We studied here the statistical properties of the rho sample estimator. We derived its asymptotic probability distribution and showed that it is neither asymptotically normal nor unbiased when rho=0 or when allelic frequencies are equal at both loci, in contrast to previous claims. This asymptotic study leads to propose a new test for absence of linkage disequilibrium. We compared it to Pearson's Chi2 test for independence in a contingency table and showed by simulations that the range in power of these two tests depends on the sign of D'. The new test outperformed slightly the Chi2 test, when D', polarized with respect to major alleles, is negative. Finally, we derived the asymptotic bias and information of the rho estimator that are due to the experimental sampling and showed by simulation that its bias is large in small samples. The consequences of these findings on applications using the rho measure are then discussed in particular for constructing LD unit maps, and call for a revised statistical treatment.  相似文献   

12.
The posterior probability of linkage (PPL) statistic has been developed as a method for the rigorous accumulation of evidence for or against linkage allowing for both intra- and inter-sample heterogeneity. To date, the method has assumed linkage equilibrium between alleles at the trait locus and the marker locus. We now generalize the PPL to allow for linkage disequilibrium (LD), by incorporating variable phase probabilities into the underlying linkage likelihood. This enables us to recover the marginal posterior density of the recombination fraction, integrating out nuisance parameters of the trait model, including the locus heterogeneity (admixture) parameter, as well as a vector of LD parameters. The marginal posterior density can then be updated across data subsets or new data as they become available, while allowing parameters of the trait model to vary between data sets. The method applies immediately to general pedigree structures and to markers with multiple alleles. In the case of SNPs, the likelihood is parameterized in terms of the standard single LD parameter D'; and it therefore affords a mechanism for estimation of D' between the marker and the trait, again, without fixing the parameters of the trait model and allowing for updating across data sets. It is even possible to allow for a different associated allele in different populations, while accumulating information regarding the strength of LD. While a computationally efficient implementation for multi-allelic markers is still in progress, we have implemented a version of this new LD-PPL for SNPs and evaluated its performance in nuclear families. Our simulations show that LD-PPLs tend to be larger than PPLs (stronger evidence in favor of linkage/LD) with increased LD level, under a variety of generating models; while in the absence of linkage and LD, LD-PPLs tend to be smaller than PPLs (stronger evidence against linkage). The estimate of D' also behaves well even in relatively small, heterogeneous samples.  相似文献   

13.
The rapid development of a dense single-nucleotide-polymorphism marker map has stimulated numerous studies attempting to characterize the magnitude and distribution of background linkage disequilibrium (LD) within and between human populations. Although genotyping errors are an inherent problem in all LD studies, there have been few systematic investigations documenting their consequences on estimates of background LD. Therefore, we derived simple deterministic formulas to investigate the effect that genotyping errors have on four commonly used LD measures-D', r, Q, and d-in studies of background LD. We have found that genotyping error rates as small as 3% can have serious affects on these LD measures, depending on the allele frequencies and the assumed error model. Furthermore, we compared the robustness of D', r, Q, and d, in the presence of genotyping errors. In general, Q and d are more robust than D' and r, although exceptions do exist. Finally, through stochastic simulations, we illustrate how genotyping errors can lead to erroneous inferences when measures of LD between two samples are compared.  相似文献   

14.
Breseghello F  Sorrells ME 《Genetics》2006,172(2):1165-1177
Association mapping is a method for detection of gene effects based on linkage disequilibrium (LD) that complements QTL analysis in the development of tools for molecular plant breeding. In this study, association mapping was performed on a selected sample of 95 cultivars of soft winter wheat. Population structure was estimated on the basis of 36 unlinked simple-sequence repeat (SSR) markers. The extent of LD was estimated on chromosomes 2D and part of 5A, relative to the LD observed among unlinked markers. Consistent LD on chromosome 2D was <1 cM, whereas in the centromeric region of 5A, LD extended for approximately 5 cM. Association of 62 SSR loci on chromosomes 2D, 5A, and 5B with kernel morphology and milling quality was analyzed through a mixed-effects model, where subpopulation was considered as a random factor and the marker tested was considered as a fixed factor. Permutations were used to adjust the threshold of significance for multiple testing within chromosomes. In agreement with previous QTL analysis, significant markers for kernel size were detected on the three chromosomes tested, and alleles potentially useful for selection were identified. Our results demonstrated that association mapping could complement and enhance previous QTL information for marker-assisted selection.  相似文献   

15.
STRUCTURE is the most widely used clustering software to detect population genetic structure. The last version of this software (STRUCTURE 2.1) has been enhanced recently to take into account the occurrence of linkage disequilibrium (LD) caused by admixture between populations. This last version, however, still does not consider the effects of strong background LD caused by genetic drift, and which may cause spurious results. STRUCTURE authors have, therefore, suggested a rough threshold value of the distance (1.0 cM) between two loci below which the pair of loci should not be used. Because of the sensitiveness of LD to demographic events, the distance between loci is not always a good indicator of the strength of LD. In this study, we examine the link between genomic distance and the strength of the correlation between loci (r(LD)) in a free-ranging population of mouflon (Ovis aries), and we present an empirical test of effect of r(LD) on the clustering results provided by the linkage model in STRUCTURE. We showed that a high r(LD) value increases the probability of detecting spurious clustering. We propose to use r(LD) as an index to base a decision on whether or not to use a pair of loci in a clustering analysis.  相似文献   

16.
The centromeric region of the X chromosome in humans experiences low rates of recombination over a considerable physical distance. In such a region, the effects of selection may extend to linked sites that are far away. To investigate the effects of this recombinational environment on patterns of nucleotide variability, we sequenced 4581 bp at Msn and 4697 bp at Alas2, two genes situated on either side of the X chromosome centromere, in a worldwide sample of 41 men, as well as in one common chimpanzee and one orangutan. To investigate patterns of linkage disequilibrium (LD) across the centromere, we also genotyped several informative sites from each gene in 120 men from sub-Saharan Africa. By studying X-linked loci in males, we were able to recover haplotypes and study long-range patterns of LD directly. Overall patterns of variability were remarkably similar at these two loci. Both loci exhibited (i) very low levels of nucleotide diversity (among the lowest seen in the human genome); (ii) a strong skew in the distribution of allele frequencies, with an excess of both very-low and very-high-frequency derived alleles in non-African populations; (iii) much less variation in the non-African than in the African samples; (iv) very high levels of population differentiation; and (v) complete LD among all sites within loci. We also observed significant LD between Msn and Alas2 in Africa, despite the fact that they are separated by approximately 10 Mb. These observations are difficult to reconcile with a simple demographic model but may be consistent with positive and/or purifying selection acting on loci within this large region of low recombination.  相似文献   

17.
This study provides a new version of the arrayed primer extension (APEX) protocol adapted to the 'array of arrays' platform using an instrumental setup for microarray processing not previously described. The primary aim of the study is to implement a system for rational cost-efficient genotyping where multiple singlenucleotide polymorphisms (SNPs) and individuals are genotyped on each microarray slide. Genotyping results are collected across 185 healthy Danish subjects and 76 SNPs on chromosome 3q13.31, because linkage to atopic disease phenotypes have been suggested in the Danish population. Linkage disequilibrium (LD) results from the experimental data are used in a novel comparison to baseline data defined by the international HapMap SNP database. Comparison on the LD results reveals a strong linear correlation irrespective of LD measure considered: R2 (D') = 0.73 and R2(r2) = 0.54. In conclusion, our results show that this setup is strong enough to support high-throughput genotyping, and these observations support that the HapMap genotype resource is important for defining SNP panels aimed at gene mapping in local subpopulations from Europe.  相似文献   

18.
Linkage disequilibrium for different scales and applications   总被引:2,自引:0,他引:2  
Assessing the patterns of linkage disequilibrium (LD) has become an important issue in both evolutionary biology and medical genetics since the rapid accumulation of densely spaced DNA sequence variation data in several organisms. LD deals with the correlation of genetic variation at two or more loci or sites in the genome within a given population. There are a variety of LD measures which range from traditional pairwise LD measures such as D' or r2 to entropy-based multi-locus measures or haplotype-specific approaches. Understanding the evolutionary forces (in particular recombination) that generate the observed variation of LD patterns across genomic regions is addressed by model-based LD analysis. Marker type and its allelic composition also influence the observed LD pattern, microsatellites having a greater power to detect LD in population isolates than SNPs. This review aims to explain basic LD measures and their application properties.  相似文献   

19.
Patterns of linkage disequilibrium (LD) reveal the action of evolutionary processes and provide crucial information for association mapping of disease genes. Although recent studies have described the landscape of LD among single nucleotide polymorphisms (SNPs) from across the human genome, associations involving other classes of molecular variation remain poorly understood. In addition to recombination and population history, mutation rate and process are expected to shape LD. To test this idea, we measured associations between short-tandem-repeat polymorphisms (STRPs), which can mutate rapidly and recurrently, and SNPs in 721 regions across the human genome. We directly compared STRP-SNP LD with SNP-SNP LD from the same genomic regions in the human HapMap populations. The intensity of STRP-SNP LD, measured by the average of D', was reduced, consistent with the action of recurrent mutation. Nevertheless, a higher fraction of STRP-SNP pairs than SNP-SNP pairs showed significant LD, on both short (up to 50 kb) and long (cM) scales. These results reveal the substantial effects of mutational processes on LD at STRPs and provide important measures of the potential of STRPs for association mapping of disease genes.  相似文献   

20.
Mitochondrial DNA and the Y chromosome (ChrY) are both highly informative regarding human evolution, demographic history, and the genetic relationships between extant populations. The major reason for this is that both genomic compartments do not recombine, except for the pseudo-autosomal regions of ChrY, and that typing of haploid markers automatically allows the identification of haplotypes. In terms of its recombination behaviour, the X chromosome (ChrX) falls between autosomes and ChrY. The significance of ChrX in terms of population genetics is partially based on the fact that its haplotypes are easier to determine than those of autosomes. While ChrY and mtDNA each represent a single locus only, with a common evolutionary history of all their constituents, ChrX comprises several regions that may each reflect its own history. Therefore, ChrX studies seem most suitable for distinguishing between subpopulations or for research on regional ethnic structures. The analysis of linkage disequilibrium (LD) is one of the key aspects of population genetics studies of ChrX markers because LD may be an indicator of genetic isolation or of the emergence from a small founder population. Populations with high LD play an important role in the identification of genes involved in the aetiology of multifactorial diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号