首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Hypoxia inducible factor-1 (HIF-1) is considered a crucial mediator of the cellular response to hypoxia through its regulation of genes that control angiogenesis. It represents an attractive therapeutic target in colon cancer, one of the few tumor types that shows a clinical response to antiangiogenic therapy. But it is unclear whether inhibition of HIF-1 alone is sufficient to block tumor angiogenesis. In HIF-1alpha knockdown DLD-1 colon cancer cells (DLD-1(HIF-kd)), the hypoxic induction of vascular endothelial growth factor (VEGF) was only partially blocked. Xenografts remained highly vascularized with microvessel densities identical to DLD-1 tumors that had wild-type HIF-1alpha (DLD-1(HIF-wt)). In addition to the preserved expression of VEGF, the proangiogenic cytokine interleukin (IL)-8 was induced by hypoxia in DLD-1(HIF-kd) but not DLD-1(HIF-wt) cells. This induction was mediated by the production of hydrogen peroxide and subsequent activation of NF-kappaB. Furthermore, the KRAS oncogene, which is commonly mutated in colon cancer, enhanced the hypoxic induction of IL-8. A neutralizing antibody to IL-8 substantially inhibited angiogenesis and tumor growth in DLD-1(HIF-kd) but not DLD-1(HIF-wt) xenografts, verifying the functional significance of this IL-8 response. Thus, compensatory pathways can be activated to preserve the tumor angiogenic response, and strategies that inhibit HIF-1alpha may be most effective when IL-8 is simultaneously targeted.  相似文献   

2.
3.
Lee SJ  Kim HP  Jin Y  Choi AM  Ryter SW 《Autophagy》2011,7(8):829-839
Beclin 1, a tumor suppressor protein, acts as an initiator of autophagy in mammals. Heterozygous disruption of Beclin 1 accelerates tumor growth, but the underlying mechanisms remain unclear. We examined the role of Beclin 1 in tumor proliferation and angiogenesis, using a primary mouse melanoma tumor model. Beclin 1 (Becn1 (+/-) ) hemizygous mice displayed an aggressive tumor growth phenotype with increased angiogenesis under hypoxia, associated with enhanced levels of circulating erythropoietin but not vascular endothelial growth factor, relative to wild-type mice. Using in vivo and ex vivo assays, we demonstrated increased angiogenic activity in Becn1 (+/-) mice relative to wild-type mice. Endothelial cells from Becn1 (+/-) mice displayed increased proliferation, migration and tube formation in response to hypoxia relative to wild-type cells. Moreover, Becn1 (+/-) cells subjected to hypoxia displayed increased hypoxia-inducible factor-2α (HIF-2α) expression relative to HIF-1α. Genetic interference of HIF-2α but not HIF-1α, dramatically reduced hypoxia-inducible proliferation, migration and tube formation in Becn1 (+/-) endothelial cells. We demonstrated that mice deficient in the autophagic protein Beclin 1 display a pro-angiogenic phenotype associated with the upregulation of HIF-2α and increased erythropoietin production. These results suggest a relationship between Beclin 1 and the regulation of angiogenesis, with implications in tumor growth and development.  相似文献   

4.
Ascochlorin, a non-toxic prenylphenol compound derived from the fungus Ascochyta viciae, has been shown recently to have anti-cancer effects on various human cancer cells. However, the precise molecular mechanism of this anti-cancer activity remains to be elucidated. Here, we investigated the effects of ascochlorin on hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) expression in human epidermoid cervical carcinoma CaSki cells. Ascochlorin inhibited epidermal growth factor (EGF)-induced HIF-1α and VEGF expression through multiple potential mechanisms. First, ascochlorin selectively inhibited HIF-1α expression in response to EGF stimulation, but not in response to hypoxia (1% O(2)) or treatment with a transition metal (CoCl(2)). Second, ascochlorin inhibited EGF-induced ERK-1/2 activation but not AKT activation, both of which play essential roles in EGF-induced HIF-1α protein synthesis. Targeted inhibition of epidermal growth factor receptor (EGFR) expression using an EGFR-specific small interfering RNA (siRNA) diminished HIF-1α expression, which suggested that ascochlorin inhibits HIF-1α expression through suppression of EGFR activation. Finally, we showed that ascochlorin functionally abrogates in vivo tumor angiogenesis induced by EGF in a Matrigel plug assay. Our data suggest that ascochlorin inhibits EGF-mediated induction of HIF-1α expression in CaSki cells, providing a potentially new avenue of development of anti-cancer drugs that target tumor angiogenesis.  相似文献   

5.
Hypoxia-inducible factor 1 (HIF-1) controls oxygen delivery (via angiogenesis) and metabolic adaptation to hypoxia (via glycolysis). HIF-1 consists of a constitutively expressed HIF-1β subunit and an oxygen- and growth-factor-regulated HIF-1α subunit. In xenografts, tumor growth and angiogenesis are correlated with HIF-1 expression. In human cancers, HIF-1α is overexpressed as a result of intratumoral hypoxia and genetic alterations affecting key oncogenes and tumor suppressor genes. HIF-1α overexpression in biopsies of brain, breast, cervical, esophageal, oropharyngeal and ovarian cancers is correlated with treatment failure and mortality. Increased HIF-1 activity promotes tumor progression, and inhibition of HIF-1 could represent a novel approach to cancer therapy.  相似文献   

6.
7.
缺氧诱导因子(hypoxia inducible factor,HIF)对维持肿瘤细胞的能量代谢、肿瘤血管生成、促进肿瘤细胞增殖和转移起着重要作用,是肿瘤细胞低氧条件下产生的关键信号分子。本综述旨在总结前人研究,阐述HIF与肾癌细胞之间的内在关系。HIF成员是参与肾癌细胞对缺氧应答反应中的关键因子,并通过靶基因的调节,促进新生血管的生成,导致肿瘤生长。其中,HIF-1α及HIF-2α在促进新生血管的生成方面发挥着主要作用。HIF-1α及HIF-2α与VEGF密切相关,随着其的表达增高,VEGF在数量上及m RNA水平上均显著增高,显示其可通过调控VEGF参与肾癌血管生成,而HIF-2α转录激活VEGF m RNA的特异性较HIF-1α更强。HIF-3α可能存在的负性调控作用,其异构体-4的作用可能与HIF-lα的负性调节有关,其可以阻止HIF-lα与下游靶基因的缺氧反应元件(hypoxia response elements,HRE)结合,同时可在转录水平抑制HIF-lα。HIF在未来可能有成为肾细胞癌治疗的靶点。  相似文献   

8.
Tumor progression and metastasis depend on the ability of cancer cells to initiate angiogenesis to ensure delivery of oxygen, nutrients, and growth factors to tumor cells and provide access to the systemic circulation. Hypoxia-inducible factor-1 (HIF-1) can activate expression of a broad range of genes that mediate many of the adaptive responses to decreased oxygen concentration, such as enhanced glucose uptake and formation of new blood vessels. Acting through Plexin-B1 on endothelial cells, Semaphorin 4D (Sema4D) has been shown to promote angiogenesis and enhance invasive growth and proliferation in some tumors. Here we show that the gene for Sema4D, the product of which is elevated in head and neck squamous cell carcinoma (HNSCC) cells, contains upstream hypoxia response elements (HRE) and is strongly induced in hypoxia in a HIF-1-dependent manner. Knocking down Sema4D expression with short hairpin (sh) RNA reduces in vitro endothelial cell migration and growth and vascularity of HNSCC xenografts expressing a degradation resistant HIF-1α subunit. We also demonstrate a correlation between HIF-1 activity and Sema4D expression in HNSCC specimens. These findings indicate that Sema4D is induced by hypoxia in a HIF-1-dependent manner and influences endothelial cell migration and tumor vascularity. Expression of Sema4D may be a strategy by which carcinomas promote angiogenesis and therefore could represent a therapeutic target for these malignancies.  相似文献   

9.
Obese white adipose tissue is hypoxic but is incapable of inducing compensatory angiogenesis. Brown adipose tissue is highly vascularized, facilitating delivery of nutrients to brown adipocytes for heat production. In this study, we investigated the mechanisms by which white and brown adipocytes respond to hypoxia. Brown adipocytes produced lower amounts of hypoxia-inducible factor 1α (HIF-1α) than white adipocytes in response to low O(2) but induced higher levels of hypoxia-associated genes. The response of white adipocytes to hypoxia required HIF-1α, but its presence alone was incapable of inducing target gene expression under normoxic conditions. In addition to the HIF-1α targets, hypoxia also induced many inflammatory genes. Exposure of white adipocytes to a peroxisome proliferator-activated receptor γ (PPARγ) ligand (troglitazone) attenuated induction of these genes but enhanced expression of the HIF-1α targets. Knockdown of PPARγ in mature white adipocytes prevented the usual robust induction of HIF-1α targets in response to hypoxia. Similarly, knockdown of PPARγ coactivator (PGC) 1β in PGC-1α-deficient brown adipocytes eliminated their response to hypoxia. These data demonstrate that the response of white adipocytes requires HIF-1α but also depends on PPARγ in white cells and the PPARγ cofactors PGC-1α and PGC-1β in brown cells.  相似文献   

10.
11.
12.
We have previously demonstrated the roles of RhoA, Rac1, and Cdc42 in hypoxia-driven angiogenesis. However, the role of oncogenes in hypoxia signaling is poorly understood. Given the importance of Rho proteins in the hypoxic response, we hypothesized that Rho family members could act as mediators of hypoxic signal transduction. We investigated the cross-talk between hypoxia and oncogene-driven signal transduction pathways and explored the role of Rac1 on hypoxia-induced hypoxia-inducible factor (HIF)-1α and VEGF expression. Since the phosphatidylinositol 3'-kinase (PI3K) pathway is involved in signal transduction of many oncogenes, we explored the role of PI3K on Rac1-mediated expression of HIF-1α and VEGF in hypoxia. We showed that LY-294002, a PI3K inhibitor, suppressed HIF-1α and VEGF induction under hypoxic conditions by up to 50%. Activation of Rac1 resulted in an upregulation of hypoxia-induced HIF-1α expression, which was blocked by LY-294002. These data suggested that Rac1 is an intermediate in the PI3K-mediated induction of HIF-1α. Interestingly, there was a significant downregulation of the tumor suppressor genes p53 and von Hippel-Lindau tumor suppressor (VHL) in cells expressing a constitutively active form of Rac1. Rac1-mediated inhibition of p53 and VHL could therefore be implicated in the upregulation of HIF-1α expression.  相似文献   

13.
14.
Macrophage secretion of vascular endothelial growth factor (VEGF) in response to hypoxia contributes to tumor growth and angiogenesis. In addition to VEGF, hypoxic macrophages stimulated with GM-CSF secrete high levels of a soluble form of the VEGF receptor (sVEGFR-1), which neutralizes VEGF and inhibits its biological activity. Using mice with a monocyte/macrophage-selective deletion of hypoxia-inducible factor (HIF)-1α or HIF-2α, we recently demonstrated that the antitumor response to GM-CSF was dependent on HIF-2α-driven sVEGFR-1 production by tumor-associated macrophages, whereas HIF-1α specifically regulated VEGF production. We therefore hypothesized that chemical stabilization of HIF-2α using an inhibitor of prolyl hydroxylase domain 3 (an upstream inhibitor of HIF-2α activation) would increase sVEGFR-1 production from GM-CSF-stimulated macrophages. Treatment of macrophages with the prolyl hydroxylase domain 3 inhibitor AKB-6899 stabilized HIF-2α and increased sVEGFR-1 production from GM-CSF-treated macrophages, with no effect on HIF-1α accumulation or VEGF production. Treatment of B16F10 melanoma-bearing mice with GM-CSF and AKB-6899 significantly reduced tumor growth compared with either drug alone. Increased levels of sVEGFR-1 mRNA, but not VEGF mRNA, were detected within the tumors of GM-CSF- and AKB-6899-treated mice, correlating with decreased tumor vascularity. Finally, the antitumor and antiangiogenic effects of AKB-6899 were abrogated when mice were simultaneously treated with a sVEGFR-1 neutralizing Ab. These results demonstrate that AKB-6899 decreases tumor growth and angiogenesis in response to GM-CSF by increasing sVEGFR-1 production from tumor-associated macrophages. Specific activation of HIF-2α can therefore decrease tumor growth and angiogenesis.  相似文献   

15.
The hypoxia-inducible factor 1α (HIF-1α) is the master regulator of the cellular response to hypoxia. A key regulator of HIF-1α is von Hippel-Lindau protein (pVHL), which mediates the oxygen-dependent, proteasomal degradation of HIF-1α in normoxia. Here, we describe a new regulator of HIF-1α, the hypoxia-associated factor (HAF), a novel E3-ubiquitin ligase that binds HIF-1α leading to its proteasome-dependent degradation irrespective of cellular oxygen tension. HAF, a protein expressed in proliferating cells, binds and ubiquitinates HIF-1α in vitro, and both binding and E3 ligase activity are mediated by HAF amino acids 654 to 800. Furthermore, HAF overexpression decreases HIF-1α levels in normoxia and hypoxia in both pVHL-competent and -deficient cells, whereas HAF knockdown increases HIF-1α levels in normoxia, hypoxia, and under epidermal growth factor stimulation. In contrast, HIF-2α is not regulated by HAF. In vivo, tumor xenografts from cells overexpressing HAF show decreased levels of HIF-1α accompanied by decreased tumor growth and angiogenesis. Therefore, HAF is the key mediator of a new HIF-1α-specific degradation pathway that degrades HIF-1α through a new, oxygen-independent mechanism.  相似文献   

16.
17.
Chronic inflammation leads to the formation of a pro-tumorigenic microenvironment that can promote tumor development, growth and differentiation through augmentation of tumor angiogenesis. Prostate cancer (CaP) risk and prognosis are adversely correlated with a number of inflammatory and angiogenic mediators, including Toll-like receptors (TLRs), NF-κB and vascular endothelial growth factor (VEGF). Peroxiredoxin 1 (Prx1) was recently identified as an endogenous ligand for TLR4 that is secreted from CaP cells and promotes inflammation. Inhibition of Prx1 by CaP cells resulted in reduced expression of VEGF, diminished tumor vasculature and retarded tumor growth. The mechanism by which Prx1 regulates VEGF expression in normoxic conditions was investigated in the current study. Our results show that incubation of mouse vascular endothelial cells with recombinant Prx1 caused increases in VEGF expression that was dependent upon TLR4 and required hypoxia inducible factor-1 (HIF-1) interaction with the VEGF promoter. The induction of VEGF was also dependent upon NF-κB; however, NF-κB interaction with the VEGF promoter was not required for Prx1 induction of VEGF suggesting that NF-κB was acting indirectly to induce VEGF expression. The results presented here show that Prx1 stimulation increased NF-κB interaction with the HIF-1α promoter, leading to enhanced promoter activity and increases in HIF-1α mRNA levels, as well as augmented HIF-1 activity that resulted in VEGF expression. Prx1 induced HIF-1 also promoted NF-κB activity, suggesting the presence of a positive feedback loop that has the potential to perpetuate Prx1 induction of angiogenesis. Strikingly, inhibition of Prx1 expression in CaP was accompanied with reduced expression of HIF-1α. The combined findings of the current study and our previous study suggest that Prx1 interaction with TLR4 promotes CaP growth potentially through chronic activation of tumor angiogenesis.  相似文献   

18.
19.
HIF-1alpha and p53: the ODD couple?   总被引:5,自引:0,他引:5  
Tumor hypoxia activates hypoxia-inducible factor-1 (HIF-1) and induces the accumulation of the tumor suppressor p53. HIF-1 signaling stimulates angiogenesis and mediates cellular adaptation to hypoxia, whereas p53 promotes hypoxia-induced apoptosis. A recent article provides in vitro biophysical evidence supporting a direct interaction between p53 and the oxygen-dependent degradation domain of the HIF-1alpha subunit. The article identifies potential structural parameters required for this interaction and suggests an alternative mechanism by which p53 might impact tumor response to therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号