共查询到20条相似文献,搜索用时 112 毫秒
1.
A continuous pure moment loading apparatus for biomechanical testing of multi-segment spine specimens 总被引:6,自引:0,他引:6
An apparatus is described that enables the application of continuous pure moment loads to multi-segment spine specimens. This loading apparatus allows continuous cycling of the spine between specified flexion and extension (or right and left lateral bending) maximum load endpoints. Using a six-degree-of-freedom load cell and three-dimensional optoelectronic stereophotogrammetry, characteristic displacement versus load hysteresis curves can be generated and analyzed for different spinal constructs of interest. Unlike quasi-static loading, the use of continuous loading permits the analysis of the spine's behaviour within the neutral zone. This information is of particular clinical significance given that the instability of a spinal segment is related to its flexibility within the neutral zone. Representative curves for the porcine lumbar spine in flexion-extension and lateral bending are presented to illustrate the capabilities of this system. 相似文献
2.
Stemper BD Storvik SG Yoganandan N Baisden JL Fijalkowski RJ Pintar FA Shender BS Paskoff GR 《Journal of biomechanical engineering》2011,133(8):081002
Ejection from military aircraft exerts substantial loads on the lumbar spine. Fractures remain common, although the overall survivability of the event has considerably increased over recent decades. The present study was performed to develop and validate a biomechanically accurate experimental model for the high vertical acceleration loading to the lumbar spine that occurs during the catapult phase of aircraft ejection. The model consisted of a vertical drop tower with two horizontal platforms attached to a monorail using low friction linear bearings. A total of four human cadaveric spine specimens (T12-L5) were tested. Each lumbar column was attached to the lower platform through a load cell. Weights were added to the upper platform to match the thorax, head-neck, and upper extremity mass of a 50th percentile male. Both platforms were raised to the drop height and released in unison. Deceleration characteristics of the lower platform were modulated by foam at the bottom of the drop tower. The upper platform applied compressive inertial loads to the top of the specimen during deceleration. All specimens demonstrated complex bending during ejection simulations, with the pattern dependent upon the anterior-posterior location of load application. The model demonstrated adequate inter-specimen kinematic repeatability on a spinal level-by-level basis under different subfailure loading scenarios. One specimen was then exposed to additional tests of increasing acceleration to induce identifiable injury and validate the model as an injury-producing system. Multiple noncontiguous vertebral fractures were obtained at an acceleration of 21 g with 488 g/s rate of onset. This clinically relevant trauma consisted of burst fracture at L1 and wedge fracture at L4. Compression of the vertebral body approached 60% during the failure test, with -6,106 N axial force and 168 Nm flexion moment. Future applications of this model include developing a better understanding of the vertebral injury mechanism during pilot ejection and developing tolerance limits for injuries sustained under a variety of different vertical acceleration scenarios. 相似文献
3.
A three-dimensional analytical model of the cervical spine is described. The cervical vertebrae and the head are modeled as rigid bodies which are interconnected by deformable elements representing the intervertebral disks, facet joints, ligaments and muscles. A special pentahedral continuum element for representing the articular facets is described which effectively maintains stability of the cervical spine in both lateral and frontal plane accelerations, which is very difficult with multi-spring models of the facets. A simplified representation is used for the spine and body below the level of T1. The neck musculature is modeled by over 100 muscle elements representing 22 major muscle groups in the neck. The model has been validated for frontal and sideways impact accelerations by simulating published experimental data. Results are also presented to show the effects of the stretch reflex response on the dynamics of the head and neck under moderate acceleration. 相似文献
4.
Whiplash injuries continue to have significant societal cost; however, the mechanism and location of whiplash injury is still under investigation. Recently, the upper cervical spine ligaments, particularly the alar ligament, have been identified as a potential whiplash injury location. In this study, a detailed and validated explicit finite element model of a 50th percentile male cervical spine in a seated posture was used to investigate upper cervical spine response and the potential for whiplash injury resulting from vehicle crash scenarios. This model was previously validated at the segment and whole spine levels for both kinematics and soft tissue strains in frontal and rear impact scenarios. The model predicted increasing upper cervical spine ligament strain with increasing impact severity. Considering all upper cervical spine ligaments, the distractions in the apical and alar ligaments were the largest relative to their failure strains, in agreement with the clinical findings. The model predicted the potential for injury to the apical ligament for 15.2 g frontal or 11.7 g rear impacts, and to the alar ligament for a 20.7 g frontal or 14.4 g rear impact based on the ligament distractions. Future studies should consider the effect of initial occupant position on ligament distraction. 相似文献
5.
Jaumard NV Bauman JA Weisshaar CL Guarino BB Welch WC Winkelstein BA 《Journal of biomechanical engineering》2011,133(7):071004
The facet joint contributes to the normal biomechanical function of the spine by transmitting loads and limiting motions via articular contact. However, little is known about the contact pressure response for this joint. Such information can provide a quantitative measure of the facet joint's local environment. The objective of this study was to measure facet pressure during physiologic bending in the cervical spine, using a joint capsule-sparing technique. Flexion and extension bending moments were applied to six human cadaveric cervical spines. Global motions (C2-T1) were defined using infra-red cameras to track markers on each vertebra. Contact pressure in the C5-C6 facet was also measured using a tip-mounted pressure transducer inserted into the joint space through a hole in the postero-inferior region of the C5 lateral mass. Facet contact pressure increased by 67.6 ± 26.9 kPa under a 2.4 Nm extension moment and decreased by 10.3 ± 9.7 kPa under a 2.7 Nm flexion moment. The mean rotation of the overall cervical specimen motion segments was 9.6 ± 0.8° and was 1.6 ± 0.7° for the C5-C6 joint, respectively, for extension. The change in pressure during extension was linearly related to both the change in moment (51.4 ± 42.6 kPa/Nm) and the change in C5-C6 angle (18.0 ± 108.9 kPa/deg). Contact pressure in the inferior region of the cervical facet joint increases during extension as the articular surfaces come in contact, and decreases in flexion as the joint opens, similar to reports in the lumbar spine despite the difference in facet orientation in those spinal regions. Joint contact pressure is linearly related to both sagittal moment and spinal rotation. Cartilage degeneration and the presence of meniscoids may account for the variation in the pressure profiles measured during physiologic sagittal bending. This study shows that cervical facet contact pressure can be directly measured with minimal disruption to the joint and is the first to provide local pressure values for the cervical joint in a cadaveric model. 相似文献
6.
7.
Kumaresan S Yoganandan N Pintar FA Maiman DJ Kuppa S 《Journal of biomechanical engineering》2000,122(1):60-71
Although considerable effort has been made to understand the biomechanical behavior of the adult cervical spine, relatively little information is available on the response of the pediatric cervical spine to external forces. Since significant anatomical differences exist between the adult and pediatric cervical spines, distinct biomechanical responses are expected. The present study quantified the biomechanical responses of human pediatric spines by incorporating their unique developmental anatomical features. One-, three-, and six-year-old cervical spines were simulated using the finite element modeling technique, and their responses computed and compared with the adult spine response. The effects of pure overall structural scaling of the adult spine, local component developmental anatomy variations that occur to the actual pediatric spines, and structural scaling combined with local component anatomy variations on the responses of the pediatric spines were studied. Age- and component-related developmental anatomical features included variations in the ossification centers, cartilages, growth plates, vertebral centrum, facet joints, and annular fibers and nucleus pulposus of the intervertebral discs. The flexibility responses of the models were determined under pure compression, pure flexion, pure extension, and varying degrees of combined compression-flexion and compression-extension. The pediatric spine responses obtained with the pure overall (only geometric) scaling of the adult spine indicated that the flexibilities consistently increase in a uniform manner from six- to one-year-old spines under all loading cases. In contrast, incorporation of local anatomic changes specific to the pediatric spines of the three age groups (maintaining the same adult size) not only resulted in considerable increases in flexibilities, but the responses also varied as a function of the age of the pediatric spine and type of external loading. When the geometric scaling effects were added to these spines, the increases in flexibilities were slightly higher; however, the pattern of the responses remained the same as found in the previous approach. These results indicate that inclusion of developmental anatomical changes characteristic of the pediatric spines has more of a predominant effect on biomechanical responses than extrapolating responses of the adult spine based on pure overall geometric scaling. 相似文献
8.
A comprehensive, geometrically accurate, nonlinear C0-C7 FE model of head and cervical spine based on the actual geometry of a human cadaver specimen was developed. The motions of each cervical vertebral level under pure moment loading of 1.0 Nm applied incrementally on the skull to simulate the movements of the head and cervical spine under flexion, tension, axial rotation and lateral bending with the inferior surface of the C7 vertebral body fully constrained were analysed. The predicted range of motion (ROM) for each motion segment were computed and compared with published experimental data. The model predicted the nonlinear moment-rotation relationship of human cervical spine. Under the same loading magnitude, the model predicted the largest rotation in extension, followed by flexion and axial rotation, and least ROM in lateral bending. The upper cervical spines are more flexible than the lower cervical levels. The motions of the two uppermost motion segments account for half (or even higher) of the whole cervical spine motion under rotational loadings. The differences in the ROMs among the lower cervical spines (C3-C7) were relatively small. The FE predicted segmental motions effectively reflect the behavior of human cervical spine and were in agreement with the experimental data. The C0-C7 FE model offers potentials for biomedical and injury studies. 相似文献
9.
Musculo-skeletal modeling could play a key role in advancing our understanding of the healthy and pathological spine, but the credibility of such models are strictly dependent on the accuracy of the anatomical data incorporated. In this study, we present a complete and coherent musculo-skeletal dataset for the thoracic and cervical regions of the human spine, obtained through detailed dissection of an embalmed male cadaver. We divided the muscles into a number of muscle-tendon elements, digitized their attachments at the bones, and measured morphological muscle parameters. In total, 225 muscle elements were measured over 39 muscles. For every muscle element, we provide the coordinates of its attachments, fiber length, tendon length, sarcomere length, optimal fiber length, pennation angle, mass, and physiological cross-sectional area together with the skeletal geometry of the cadaver. Results were consistent with similar anatomical studies. Furthermore, we report new data for several muscles such as rotatores, multifidus, levatores costarum, spinalis, semispinalis, subcostales, transversus thoracis, and intercostales muscles. This dataset complements our previous study where we presented a consistent dataset for the lumbar region of the spine (Bayoglu et al., 2017). Therefore, when used together, these datasets enable a complete and coherent dataset for the entire spine. The complete dataset will be used to develop a musculo-skeletal model for the entire human spine to study clinical and ergonomic applications. 相似文献
10.
11.
Davies MA Bryant SC Larsen SP Murrey DB Nussman DS Laxer EB Darden BV 《Journal of biomechanical engineering》2006,128(4):481-486
Articulating cervical disk implants have been proposed as an alternative to disk fusion in the treatment of cervical disk disease. To examine the mechanical effect of articulating cervical disk implants (ACDI) versus simulated cervical disk fusion, a mechanical test device was constructed and cadaveric tests were carried out. While results show little effect on the pressures above and below the treatment level, the percent hysteretic behavior of the specimens trended to be higher for the ACDI, indicating that these implants retain more of the natural energy absorption capability of the cervical spine. 相似文献
12.
The load-displacement response and strength of the mid (C2-C5) and lower (C5-T1) cervical regions were determined for combinations of sagittal loads, in vitro. In unpaired t-test comparisons, the mid cervical region was significantly stiffer in compression and extension than the lower region. In tests to failure, failure in six out of seven mid cervical specimens resulted from flexion alone, while combined compression-flexion was required to fail five of the eight lower cervical specimens. Post-test dissections revealed no regional differences in the pattern of failure. In addition to sagittal tests, the load-displacement responses of three-vertebrae cervical specimens were measured with the upper body axially rotated with respect to the lower body. The effect of this pre-torsion was to diminish the zone of low slope near zero load for axial, shear, and flexion motion. Three of the four axially rotated specimens failed in flexion without added compression. These controlled load-displacement measurements of cervical spine specimens describe for the first time the continuous flexion-compression response up to failure, and suggest that consideration of the biomechanics of three apparently distinct mobile regions of the cervical spine (C1-C2, C2-C5, C5-T1) may facilitate the interpretation of hazardous conditions and the diagnosis of injury. These data also provide basic information for the in vitro investigation of passive cervical spine protection such as helmets and head-rests, suggesting that the head should be kept in a non-rotated position to reduce risk of injury. 相似文献
13.
G. Tuynenburg Muys 《Antonie van Leeuwenhoek》1949,15(1):203-210
14.
A kinematic and anthropometric study of the upper cervical spine and the occipital condyles 总被引:2,自引:0,他引:2
The center of rotation (COR) of the upper cervical spine (UCS) is an important biomechanical landmark that is used to determine upper neck moment, particularly when evaluating injury risk in the automotive environment. However, neither the location of the UCS CORs nor the occipital condyles (OCs), which are frequently the referenced landmark for UCS CORs, have been measured with respect to known cranial landmarks. This study determines the CORs using pure bending (+/-3.5 N m), 3D digitization, and image analysis. Landmarks digitized included the OCs, external auditory meatus (EAM), infraorbital foramen, zygion, nasion, and the foramen magnum. The centroid of each occipital condylar surface (area 301+/-29.8 mm(2); length 25.4+/-3.2 mm) was located 18.4 mm posterior, 54.4 mm medial, and 31.0 mm inferior of the EAM. The UCS CORs were distinct: On average, OC-C1 CORs (22.5 mm posterior and 22.6 mm inferior to the left EAM) were superior and more posterior of OCs; C1-C2 CORs (7.4 mm posterior and 46.7 mm inferior to the left EAM) were inferior and more anterior of OC; and OC-C2 CORs (17.0 mm posterior and 33.1 mm inferior to the left EAM) were aligned with OC. There was a statistically significant difference between the percentage of UCS rotation in C1-C2 and OC-C1; 45% of the flexion and 71% of the extension occurred in OC-C1. Details of an anatomical variant with two pairs of distinct condylar surfaces are also presented. 相似文献
15.
16.
An apparatus designed to demineralize 54 specimens simultaneously is described. A drum with built-in specimen holders rotates continuously through a bath of acid, allowing a free exchange of demineralizing fluid over the specimens. Individual specimens can be easily introduced or withdrawn from the apparatus without disturbing others. 相似文献
17.
Geometric and mechanical properties of human cervical spine ligaments 总被引:12,自引:0,他引:12
This study characterized the geometry and mechanical properties of the cervical ligaments from C2-T1 levels. The lengths and cross-sectional areas of the anterior longitudinal ligament, posterior longitudinal ligament, joint capsules, ligamentum flavum, and interspinous ligament were determined from eight human cadavers using cryomicrotomy images. The geometry was defined based on spinal anatomy and its potential use in complex mathematical models. The biomechanical force-deflection, stiffness, energy, stress, and strain data were obtained from 25 cadavers using in situ axial tensile tests. Data were grouped into middle (C2-C5) and lower (C5-T1) cervical levels. Both the geometric length and area of cross section, and the biomechanical properties including the stiffness, stress, strain, energy, and Young's modulus, were presented for each of the five ligaments. In both groups, joint capsules and ligamentum flavum exhibited the highest cross-sectional area (p < 0.005), while the longitudinal ligaments had the highest length measurements. Although not reaching statistical significance, for all ligaments, cross-sectional areas were higher in the C5-T1 than in the C2-C5 group; and lengths were higher in the C2-C5 than in the C5-T1 group with the exception of the flavum (Table 1 in the main text). Force-deflection characteristics (plots) are provided for all ligaments in both groups. Failure strains were higher for the ligaments of the posterior (interspinous ligament, joint capsules, and ligamentum flavum) than the anterior complex (anterior and posterior longitudinal ligaments) in both groups. In contrast, the failure stress and Young's modulus were higher for the anterior and posterior longitudinal ligaments compared to the ligaments of the posterior complex in the two groups. However, similar tendencies in the structural responses (stiffness, energy) were not found in both groups. Researchers attempting to incorporate these data into stress-analysis models can choose the specific parameter(s) based on the complexity of the model used to study the biomechanical behavior of the human cervical spine. 相似文献
18.
19.
20.
The quasi-static and dynamic bending responses of the human mid-lower cervical spine were determined using cadaver intervertebral joints fixed at the base to a six-axis load cell. Flexion bending moment was applied to the superior end of the specimen using an electrohydraulic piston. Each specimen was tested under three cycles of quasi-static load-unload and one high-speed dynamic load. A total of five specimens were included in this study. The maximum intervertebral rotation ranged from 11.0 to 15.4 deg for quasi-static tests and from 22.9 to 34.4 deg for dynamic tests. The resulting peak moments at the center of the intervertebral joint ranged from 3.8 to 6.9 Nm for quasi-static tests and from 14.0 to 31.8 Nm for dynamic tests. The quasi-static stiffness ranged from 0.80 to 1.35 Nm/deg with a mean of 1.03 Nm/deg (+/- 0.11 Nm/deg). The dynamic stiffness ranged from 1.08 to 2.00 Nm/deg with a mean of 1.50 Nm/deg (+/- 0.17 Nm/deg). The differences between the two stiffnesses were statistically significant (p < 0.01). Exponential functions were derived to describe the quasi-static and dynamic moment-rotation responses. These results provide input data for lumped-parameter models and validation data for finite element models to better investigate the biomechanics of the human cervical spine. 相似文献