首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We studied capillary perfusion patterns in single alveolar walls through a transparent thoracic window implanted in pentobarbital-anesthetized dogs. The capillaries were maximally opened by brief inflation of a balloon in the left atrium to raise pressure. After the balloon was deflated and pulmonary hemodynamics returned to zone 2 baseline conditions, the capillaries that remained perfused in the observed field were videotaped with the use of in vivo microscopy. The cycle of elevated pressure and baseline observation was repeated three times. Perfusion of different capillaries during each of the observations would imply that the capillaries had characteristics that permitted flow to switch between segments. Perfusion of a specific set of pathways through the network each time would demonstrate that flowing blood sought a unique and repeatable combination of segments, presumably with the least total pathway resistance. We found that the same capillary segments were perfused 79% of the time, a strong indication that a reproducible combination of individual segmental resistances determined the predominant pattern of pulmonary capillary perfusion.  相似文献   

2.
3.
Hanger, Christopher C., Robert G. Presson, Jr., Osamu Okada,Steven J. Janke, John J. Watkins, Wiltz W. Wagner, Jr., and Ronald L. Capen. Computer determination of perfusion patterns in pulmonarycapillary networks. J. Appl. Physiol.82(4): 1283-1289, 1997.Individual pulmonary capillaries are notsteadily perfused. By using in vivo microscopy, it can readily bedemonstrated that perfusion continually switches between capillarysegments and between portions of the network within a single alveolarwall. These changes in capillary perfusion occur even when upstream pressure and flow are constant. Flow switching between capillary segments in the absence of hemodynamic changes in large upstream vessels suggests that capillary perfusion patterns could be random. Tocalculate the probability that perfusion patterns could occur bychance, it is necessary to know the total number of possible perfusionpatterns in a given capillary network. We developed a computer programthat can determine every possible perfusion pattern for any givencapillary network, and from that information we can calculate whetherperfusion of individual segments in the network is random. With theresults of the computer program, we have obtained statistical evidencethat some capillary segments in a network are nonrandomly perfused.

  相似文献   

4.
The general architecture of capillary and alveolar walls of the mouse lung was studied by means of the electron microscope. In order to minimize tissue damage and to improve the cutting properties of embeddings, several modifications in the tissue processing methods were adopted. These modifications were: fixation by infusion, a prolonged time of dehydration, of impregnation, and of polymerization, the use of acetone for dehydration, ammonium sulfide treatment of the fixed and washed tissue, and an elevated (80 degrees C.) polymerization temperature combined with the use of prepolymerized methacrylate. The generally favorable effects of these modified methods upon preservation and cutting properties of embedded tissue are discussed. Both capillary endothelium and alveolar epithelium were found continuous and without pores. The endothelium was seen to be thinnest in those portions that were adjacent to alveolar air spaces. Two morphological "types" of alveolar epithelial cells were found. One protruded into the alveolar lumen with its thick portion containing the nucleus. The other was often located in a niche of the alveolar wall, and contained peculiar dark inclusions amidst numerous mitochondria. Both were attenuated at their periphery to form the thin epithelial layer. The layer between endothelium and epithelium was designated as basement membrane. It was seen to be generally thin and structureless, but was found thickened in some areas where it also contained collagen fibrils.  相似文献   

5.
The effect of plasma volume expansion on transcapillary exchange and norepinephrine release in the heart was examined in pentobarbital sodium-anesthetized dogs by use of the multiple indicator-dilution technique. Animals were studied under basal conditions and following infusion of the plasma expander, dextran. Catheters were placed in coronary artery and coronary sinus in a closed-chest preparation. Labeled albumin, sucrose, and norepinephrine were injected into the coronary artery and outflow-dilution curves were secured. Analysis of these provided parameters reflecting coronary flow and permeability-surface product, and a norepinephrine tracer kinetic-bulk model provided simultaneous estimates of the rate of norepinephrine release into the myocardial interstitial space. The infusion of dextran resulted in a large increase in coronary flow without significant changes in myocardial norepinephrine release; at the same time the permeability-surface product values increased, amplifying the capacity of the higher flow to deliver substrates to sarcolemmal cells. The findings indicate that plasma volume expansion increases transcapillary exchange in the heart without activating the cardiac sympathetic system.  相似文献   

6.
Mechanial properties of alveolar walls   总被引:2,自引:0,他引:2  
  相似文献   

7.
Pulmonary capillary perfusion was analyzed from videomicroscopic recordings to determine flow switching characteristics among capillary segments in isolated, blood-perfused canine lungs. Within each alveolus, the rapid switching pattern was repetitive and was, therefore, nonrandom (fractal dimensions near 1.0). This self-similarity over time was unexpected in a network widely considered to be passive. Among adjacent alveoli, the relationship among the switching patterns was even more surprising, for there was virtually no relationship between the perfusion patterns (coefficients of determination approaching zero). These findings demonstrated that the perfusion patterns in individual alveolar walls were independent of their next-door neighbors. The lack of dependence among neighboring networks suggests an interesting characteristic: the failure of one alveolar-capillary bed would leave its neighbors relatively unaffected, a feature of a robust design.  相似文献   

8.
9.
10.
We studied the incidence of electron microscopic pathological patterns of the alveolar septum observed 30 min after induction of pulmonary edema by dextran-70 infusion (6 dogs, dextran group) and by alloxan injection (6 dogs, alloxan group). For comparable amounts of extravascular lung water in both dextran and alloxan groups, which were twice as much as control group (6 dogs), we characterized the pathological changes. The incidence of the electron microscopic pathological patterns that appeared in dextran group compared with that in control group was significantly high in terms of the widening of the interstitial space, dispersion and disarray of collagen fibrils, and erythrocytes in the interstitial space. The incidence in alloxan group compared with that in control group was significantly high in terms of the swelling of epithelial cells and endothelial cells as well as the widening of the interstitial space, and dispersion and disarray of collagen fibrils. We conclude that dextran causes interstitial changes exclusively and alloxan causes cellular changes primarily coupled with secondary interstitial changes in acute pulmonary edema.  相似文献   

11.
12.
Transport of protein across the alveolar epithelial barrier is a critical process in recovery from pulmonary edema and is also important in maintaining the alveolar milieu in the normal healthy lung. Various mechanisms have been proposed for clearing alveolar protein, including transport by the mucociliary escalator, intra-alveolar degradation, or phagocytosis by macrophages. However, the most likely processes are endocytosis across the alveolar epithelium, known as transcytosis, or paracellular diffusion through the epithelial barrier. This article focuses on protein transport studies that evaluate these two potential mechanisms in whole lung or animal preparations. When protein concentrations in the air spaces are low, e.g., albumin concentrations <0.5 g/100 ml, protein transport demonstrates saturation kinetics, temperature dependence indicating high energy requirements, and sensitivity to pharmacological agents that affect endocytosis. At higher concentrations, the protein clearance rate is proportional to protein concentration without signs of saturation, inversely related to protein size, and insensitive to endocytosis inhibition. Temperature dependence suggests a passive process. Based on these findings, alveolar albumin clearance occurs by receptor-mediated transcytosis at low protein concentrations but proceeds by passive paracellular mechanisms at higher concentrations. Because protein concentrations in pulmonary edema fluid are high, albumin concentrations of 5 g/100 ml or more, clearance of alveolar protein occurs by paracellular pathways in the setting of pulmonary edema. Transcytosis may be important in regulating the alveolar milieu under nonpathological circumstances. Alveolar degradation may become important in long-term protein clearance, clearance of insoluble proteins, or under pathological conditions such as immune reactions or acute lung injury. acute respiratory distress syndrome; endocytosis; diffusion; protein transport pulmonary edema  相似文献   

13.
Collagen and elastin fibers in human pulmonary alveolar walls   总被引:1,自引:0,他引:1  
The morphology and morphometric data of collagen and elastin fibers in the pulmonary alveolar walls are presented. Specimens were obtained from postmortem lungs quick-frozen at specified transpulmonary pressures. Collagen was stained by silver, and elastin was stained by orcein. Photomicrographs were composed by computer. Young lungs typically show small collagen fibers that radiate from the "posts," whereas larger fiber bundles traverse the septum irrespective of capillary blood vessels. In older lungs, rings of collagen around the posts appear enlarged. Elastin bundles do not show obvious variation in pattern with age and inflation pressure. Statistical frequency distributions of the fiber width and curvature are both skewed, but the square root of the width and the cube root of the curvature have approximate normal distributions. Typically, for young lungs at transpulmonary pressure of 4 cmH2O, the mean of (width)1/2 (in micron1/2) for collagen fibers is 0.952 +/- 0.242 (SD), that of (curvature)1/3 (in micron-1/3) is 0.349 +/- 0.094. The corresponding values for elastin are 0.986 +/- 0.255 and 0.395 +/- 0.094.  相似文献   

14.
15.
16.
17.
Hysteresis of the alveolar capillary membrane in normal subjects   总被引:1,自引:0,他引:1  
Weibel and associates (Respir. Physiol. 18: 285-308, 1973), using morphometric techniques, demonstrated in the rat that changes in lung volume related to inflation and deflation caused a hysteretic variation in alveolar capillary membrane which is locally pleated at low pulmonary volume, unfolds during inflation but does not immediately refold during deflation, possibly enhancing the CO diffusion throughout the membrane. The present study was conducted to verify the existence of this hysteresis in human lungs in vivo. Single-breath diffusing capacity for CO (DLCO) was measured in five healthy seated subjects before and 0, 0.5, 1, 3, and 7 min after an inflation-deflation maneuver (IDM) in 6 separate days. The value of mean DLCO was 36.4 +/- 3 (SD) before and 42.1 +/- 2.9, 41.6 +/- 3.3, 40.3 +/- 3.3, 39.2 +/- 3.2, and 38.1 +/- 2.7 ml X min-1 X Torr-1 after the IDM. Two mechanisms can explain our findings: an active filling of the capillary bed, or an unfolding of the alveolar capillary membrane. The first mechanism should be accompanied by changes in pulmonary circulation. Therefore, right-heart catheterization was performed in two normal subjects and in four patients examined for a chest pain syndrome. At the end of the IDM, the values for the pulmonary artery pressure and capillary wedge pressure had returned to control levels. This suggests that the capillary bed is not directly involved in the DLCO increase observed from 0.5 to 7 min after the IDM. The unfolding of the alveolar capillary membrane appears to better explain our findings.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Intratracheal instillation of the monocyte chemoattractant JE/monocyte chemoattractant protein (MCP)-1 in mice was recently shown to cause increased alveolar monocyte accumulation in the absence of lung inflammation, whereas combined JE/MCP-1/lipopolysaccharide (LPS) challenge provoked acute lung inflammation with early alveolar neutrophil and delayed alveolar monocyte influx. We evaluated the role of resident alveolar macrophages (rAM) in these leukocyte recruitment events and related phenomena of lung inflammation. Depletion of rAM by pretreatment of mice with liposomal clodronate did not affect the JE/MCP-1-driven alveolar monocyte accumulation, despite the observation that rAM constitutively expressed the JE/MCP-1 receptor CCR2, as analyzed by flow cytometry and immunohistochemistry. In contrast, depletion of rAM largely suppressed alveolar cytokine release as well as neutrophil and monocyte recruitment profiles upon combined JE/MCP-1/LPS treatment. Despite this strongly attenuated alveolar inflammatory response, increased lung permeability was still observed in rAM-depleted mice undergoing JE/MCP-1/LPS challenge. Lung leakage was abrogated by codepletion of circulating neutrophils or administration of anti-CD18. Collectively, rAM are not involved in JE/MCP-1-driven alveolar monocyte recruitment in noninflamed lungs but largely contribute to the alveolar cytokine response and enhanced early neutrophil and delayed monocyte influx under inflammatory conditions (JE/MCP-1/LPS deposition). Loss of lung barrier function observed under these conditions is rAM independent but involves circulating neutrophils via beta(2)-integrin engagement.  相似文献   

19.
T A Detlaf 《Ontogenez》1989,20(6):647-657
A summary of studies on temporal characteristics of animal development performed during last 30 years using dimensionless unit as a parameter of development duration is presented. This approach allowed to introduce time as a parameter in comparative embryological studies. Thus the time of development became a subject of the embryological studies. Perspectives for the future work are defined.  相似文献   

20.
We examined the effects of varying levels of alveolar hypoxia on regional distribution of pulmonary blood flow (QL) in control-ventilated sheep. Regional distribution of QL was measured using 15-micron-diam labeled microspheres during the base-line period and at two levels of hypoxemia (arterial O2 partial pressure 44 and 20 Torr). During the base-line period, regional distribution of QL in the prone position was uniform [14 +/- 4% (SE) of QL/g bloodless dry lung wt in the upper lung and 16 +/- 2% of QL/g in the dependent lung]. During hypoxemia, however, the regional distribution of QL increased in the upper lung (20 +/- 3% of QL/g) while it decreased in the dependent lung (10 +/- 2% of QL/g). The degree of flow distribution was proportional to the severity of hypoxemia. The flow distribution was not associated with significant increases in pulmonary blood flow (2.0 +/- 0.4----2.4 +/- 0.5----2.6 +/- 0.1 l/min) but was associated with increases in mean pulmonary arterial pressure (17.8 +/- 1.3----21.7 +/- 1.1----29.0 +/- 3.8 Torr). Therefore alveolar hypoxia results in a relative increase in regional pulmonary perfusion to the upper lung, which depends on the level of pulmonary hypertension. The increased upper lung perfusion may be due to recruitment in the upper lung or to vasodilation in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号