首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enhanced Th2 cell-mediated allergic inflammation in Tyk2-deficient mice   总被引:3,自引:0,他引:3  
Allergic inflammation is mediated by Th2 cell-derived cytokines, including IL-4, IL-5, and IL-13, and down-regulated by IFN-gamma and IL-12. Tyk2 is a member of the Janus family of protein tyrosine kinases and is activated by a variety of cytokines: IFN-alphabeta, IL-6, IL-10, IL-12, and IL-13. In this study, we investigated the role of Tyk2 in the regulation of Ag-induced Th cell differentiation and Ag-induced allergic inflammation in the airways using Tyk2-deficient (Tyk2(-/-)) mice. When splenocytes were stimulated with antigenic peptide, IL-12-mediated Th1 cell differentiation was decreased, but IL-4-mediated Th2 cell differentiation was increased in Tyk2(-/-) mice. In vivo, Ag-specific IgE and IgG1 production was increased, but Ag-specific IgG2a production was decreased in Tyk2(-/-) mice as compared with those in control mice. In addition, Ag-induced eosinophil and CD4(+) T cell recruitment, as well as the production of Th2 cytokines in the airways, was increased in Tyk2(-/-) mice. Adoptive transfer experiments revealed that CD4(+) T cells were responsible for the enhanced Ag-induced eosinophil recruitment in Tyk2(-/-) mice. In contrast, although the level of IL-13 was increased in the airways of Tyk2(-/-) mice after Ag inhalation, the number of goblet cells, as well as Muc5ac mRNA expression, was decreased in Tyk2(-/-) mice. Together, these results indicate that Tyk2 plays a bilateral role in the regulation of allergic inflammation in the airways: Tyk2 plays a role in the down-regulation of Th2 cell-mediated Ab production and eosinophil recruitment in the airways by regulating Th1/Th2 balance toward Th1-type, while Tyk2 is necessary for the induction of IL-13-mediated goblet cell hyperplasia in the airways.  相似文献   

2.
To investigate the role of HLA-DQ molecules and/or CD4(+) T cells in the pathogenesis of allergic asthma, we generated HLA-DQ6 and HLA-DQ8 transgenic mice lacking endogenous class II (Abeta(null)) and CD4 genes and challenged them intranasally with short ragweed allergenic extract (SRW). We found that DQ6/CD4(null) mice developed a strong eosinophilic infiltration into the bronchoalveolar lavage and lung tissue, while DQ8/CD4(null) mice were normal. However, neither cytokines nor eosinophil peroxidase in the bronchoalveolar lavage of DQ6/CD4(null) mice was found. In addition, the airway reactivity to methacholine was elevated moderately in DQ6/CD4(null) mice compared with the high response in DQ/CD4(+) counterparts and was only partially augmented by CD4(+) T cell transfer. The DQ6/CD4(null) mice showed Th1/Th2-type cytokines and SRW-specific Abs in the immune sera in contrast to a direct Th2 response observed in DQ6/CD4(+) mice. The proliferative response of spleen mononuclear cells and peribronchial lymph node cells demonstrated that the response to SRW in DQ6/CD4(null) mice was mediated by HLA-DQ-restricted CD4(-)CD8(-)NK1.1(-) T cells. FACS analysis of PBMC and spleen mononuclear cells demonstrated an expansion of double-negative (DN) CD4(-)CD8(-)TCRalphabeta(+) T cells in SRW-treated DQ6/CD4(null) mice. These cells produced IL-4, IL-5, IL-13, and IFN-gamma when stimulated with immobilized anti-CD3. IL-5 ELISPOT assay revealed that DN T cells were the cellular origin of IL-5 in allergen-challenged DQ6/CD4(null) mice. Our study shows a role for HLA-DQ-restricted CD4(+) and DN T cells in the allergic response.  相似文献   

3.
The ability of IFN-gamma to antagonize established Th2 type allergic responses is well documented. To investigate the role of IFN-gamma-inducible protein 10 kDa (IP10) in the allergic response, we chose to investigate the effect of IP10 neutralization on an established Th2 response. Systemic neutralization of IP10 at the time of allergen challenge increased airway hyperreactivity as well as airway eosinophil accumulation. Interestingly, IFN-gamma levels were markedly reduced in both the lung and peripheral lymph node following IP10 neutralization. Furthermore, the number of CXCR3(+)CD4(+) T cells was decreased in the peripheral lymph node following neutralization of IP10. Introduction of exogenous IP10 into the airway at the time of allergen challenge also dramatically increased eosinophil accumulation in the airway. Protein levels of IL-4, IL-5, and IL-13 were significantly increased in the lung following exogenous airway administration of IP10 with allergen. Interestingly, airway hyperreactivity was significantly decreased at early time points following concurrent IP10 and allergen challenge but rebounded at 24 and 48 h post allergen challenge. Although IP10 may initially be acting locally to dampen the allergic response, its ability to recruit eosinophils may ultimately supersede any immunomodulatory effect it may have in an established allergic response. These results suggest that while systemic levels of IP10 are beneficial in controlling the allergic response, possibly by regulating cellular trafficking in the lymph node, local administration of exogenous IP10 into an established allergic response may be detrimental.  相似文献   

4.
Chemokine-induced T lymphocyte recruitment to the lung is critical for allergic inflammation, but chemokine signaling pathways are incompletely understood. Regulator of G protein signaling (RGS)16, a GTPase accelerator (GTPase-activating protein) for Galpha subunits, attenuates signaling by chemokine receptors in T lymphocytes, suggesting a role in the regulation of lymphocyte trafficking. To explore the role of RGS16 in T lymphocyte-dependent immune responses in a whole-organism model, we generated transgenic (Tg) mice expressing RGS16 in CD4(+) and CD8(+) cells. rgs16 Tg T lymphocytes migrated to CC chemokine ligand 21 or CC chemokine ligand 12 injection sites in the peritoneum, but not to CXC chemokine ligand 12. In a Th2-dependent model of allergic pulmonary inflammation, CD4(+) lymphocytes bearing CCR3, CCR5, and CXCR4 trafficked in reduced numbers to the lung after acute inhalation challenge with allergen (OVA). In contrast, spleens of sensitized and challenged Tg mice contained increased numbers of CD4(+)CCR3(+) cells producing more Th2-type cytokines (IL-4, IL-5, and IL-13), which were associated with increased airway hyperreactivity. Migration of Tg lymphocytes to the lung parenchyma after adoptive transfer was significantly reduced compared with wild-type lymphocytes. Naive lymphocytes displayed normal CCR3 and CXCR4 expression and cytokine responses, and compartmentation in secondary lymphoid organs was normal without allergen challenge. These results suggest that RGS16 may regulate T lymphocyte activation in response to inflammatory stimuli and migration induced by CXCR4, CCR3, and CCR5, but not CCR2 or CCR7.  相似文献   

5.
IL-4 and IL-13 play key roles in Th2 immunity and asthma pathogenesis. Although the function of these cytokines is partially linked through their shared use of IL-4Ralpha for signaling, the interplay between these cytokines in the development of memory Th2 responses is not well delineated. In this investigation, we show that both IL-4 and IL-13 influence the maturation of dendritic cells (DC) in the lung and their ability to regulate secretion of IFN-gamma and Th2 cytokines by memory CD4(+) T cells. Cocultures of wild-type T cells with pulmonary DC from allergic, cytokine-deficient mice demonstrated that IL-4 enhanced the capacity of DC to stimulate T cell secretion of Th2 cytokines, whereas IL-13 enhanced the capacity of DC to suppress T cell secretion of IFN-gamma. Because IL-4Ralpha is critical for IL-4 and IL-13 signaling, we also determined how variants of IL-4Ralpha influenced immune cell function. T cells derived from allergic mice expressing a high-affinity IL-4Ralpha variant produced higher levels of IL-5 and IL-13 compared with T cells derived from allergic mice expressing a low-affinity IL-4Ralpha variant. Although DC expressing different IL-4Ralpha variants did not differ in their capacity to influence Th2 cytokine production, they varied in their capacity to inhibit IFN-gamma production by T cells. Thus, IL-4 and IL-13 differentially regulate DC function and the way these cells regulate T cells. The affinity of IL-4Ralpha also appears to be a determinant in the balance between Th2 and IFN-gamma responses and thus the severity of allergic disease.  相似文献   

6.
Pulmonary eosinophilia, a hallmark pathologic feature of allergic lung disease, is regulated by interleukin-13 (IL-13) as well as the eotaxin chemokines, but the specific role of these cytokines and their cooperative interaction are only partially understood. First, we elucidated the essential role of IL-13 in the induction of the eotaxins by comparing IL-13 gene-targeted mice with wild type control mice by using an ovalbumin-induced model of allergic airway inflammation. Notably, ovalbumin-induced expressions of eotaxin-1 and eotaxin-2 mRNA in the lungs were almost completely dependent upon IL-13. Second, in order to address the specific role of eotaxin-2 in IL-13-induced pulmonary eosinophilia, we generated eotaxin-2 gene-deficient mice by homologous recombination. Notably, in contrast to observations made in eotaxin-1-deficient mice, eotaxin-2-deficient mice had normal base-line eosinophil levels in the hematopoietic tissues and gastrointestinal tract. However, following intratracheal IL-13 administration, eotaxin-2-deficient mice showed a profound reduction in airway eosinophilia compared with wild type mice. Most interestingly, the level of peribronchial lung tissue eosinophils in IL-13-treated eotaxin-2-deficient mice was indistinguishable from wild type mice. Furthermore, IL-13 lung transgenic mice genetically engineered to be deficient in eotaxin-2 had a marked reduction of luminal eosinophils. Mechanistic analysis identified IL13-induced eotaxin-2 expression by macrophages in a distinct lung compartment (luminal inflammatory cells) compared with eotaxin-1, which was expressed solely in the tissue. Taken together, these results demonstrate a cooperative mechanism between IL-13 and eotaxin-2. In particular, IL-13 mediates allergen-induced eotaxin-2 expression, and eotaxin-2 mediates IL-13-induced airway eosinophilia.  相似文献   

7.
IL-2 influences both survival and differentiation of CD4(+) T effector and regulatory T cells. We studied the effect of i.n. administration of Abs against the alpha- and the beta-chains of the IL-2R in a murine model of allergic asthma. Blockade of the beta- but not the alpha-chain of the IL-2R after allergen challenge led to a significant reduction of airway hyperresponsiveness. Although both treatments led to reduction of lung inflammation, IL-2 signaling, STAT-5 phosphorylation, and Th2-type cytokine production (IL-4 and IL-5) by lung T cells, IL-13 production and CD4(+) T cell survival were solely inhibited by the blockade of the IL-2R beta-chain. Moreover, local blockade of the common IL-2R/IL-15R beta-chain reduced NK cell number and IL-2 production by lung CD4(+)CD25(+) and CD4(+)CD25(-) T cells while inducing IL-10- and TGF-beta-producing CD4(+) T cells in the lung. This cytokine milieu was associated with reduced CD4(+) T cell proliferation in the draining lymph nodes. Thus, local blockade of the beta-chain of the IL-2R restored an immunosuppressive cytokine milieu in the lung that ameliorated both inflammation and airway hyperresponsiveness in experimental allergic asthma. These findings provide novel insights into the functional role of IL-2 signaling in experimental asthma and suggest that blockade of the IL-2R beta-chain might be useful for therapy of allergic asthma in humans.  相似文献   

8.
We recently used a murine model of allergic airway inflammation to show that poly(ADP-ribose) polymerase-1 (PARP-1) plays an important role in the pathogenesis of asthma-related lung inflammation. In this study, we show that PARP-1 inhibition, by a novel inhibitor (TIQ-A) or by gene deletion, prevented eosinophilic infiltration into the airways of OVA-challenged mice. Such impairment of eosinophil recruitment appeared to take place after IgE production. OVA challenge of wild-type mice resulted in a significant increase in IL-4, IL-5, IL-10, IL-13, and GM-CSF secretions. Although IL-4 production was moderately affected in OVA-challenged PARP-1(-/-) mice, the production of IL-5, IL-10, IL-13, and GM-CSF was completely inhibited in ex vivo OVA-challenged lung cells derived from these animals. A single TIQ-A injection before OVA challenge in wild-type mice mimicked the latter effects. The marked effect PARP-1 inhibition exerted on mucus production corroborated the effects observed on the Th2 response. Although PARP-1 inhibition by gene knockout increased the production of the Th1 cytokines IL-2 and IL-12, the inhibition by TIQ-A exerted no effect on these two cytokines. The failure of lung cells derived from OVA-challenged PARP-1(-/-) mice to synthesize GM-CSF, a key cytokine in eosinophil recruitment, was reestablished by replenishment of IL-5. Furthermore, intranasal administration of IL-5 restored the impairment of eosinophil recruitment and mucus production in OVA-challenged PARP-1(-/-) mice. The replenishment of either IL-4 or IgE, however, did not result in such phenotype reversals. Altogether, these results suggest that PARP-1 plays a critical role in eosinophil recruitment by specifically regulating the cascade leading to IL-5 production.  相似文献   

9.
Activation of CD4(+)CD25(+)Foxp3(+) naturally occurring regulatory T cells (nTregs) resulting in suppression of lung allergic responses requires interaction of MHC class I on nTregs and CD8. In the absence of CD8 (CD8(-/-) recipients), transferred nTregs restored airway hyperresponsiveness, eosinophilic inflammation, and IL-13 levels following allergen exposure. Enhancement of lung allergic responses was accompanied by reduced expression of Foxp3 and increased expression of IL-13 in the transferred nTregs. In CD8(-/-) recipients pretreated with glucocorticoid-induced TNFR-related protein-ligand Ab, the transferred nTregs maintained high levels of Foxp3 and did not result in altered lung responses. Thus, the regulatory function of nTregs can be subverted by reducing the expression of Foxp3 and following signaling through glucocorticoid-induced TNFR-related protein are converted nTregs into IL-13-producing CD4(+) T cells mediating lung allergic responses.  相似文献   

10.
Interleukin-9 is an immunoregulatory cytokine implicated in the development of asthma and allergy. To investigate the role of IL-9 in vivo, we have generated transgenic mice in which IL-9 is expressed from its own promoter. Strikingly, overexpression of IL-9 resulted in premature mortality associated with a complex phenotype characterized by the development of autoantibodies, hydronephrosis, and T cell lymphoma. By intercrossing IL-9 transgenic mice with a panel of Th2 cytokine-deficient mice, we demonstrate that these disorders represent distinct phenotypes that can be dissociated by their differential dependence on Th2 cytokines. Autoantibody production was ablated in IL-9 transgenic animals with a combined absence of IL-4, IL-5, and IL-13, coincident with a reduction in peritoneal B-1 cells. Hydronephrosis arose in 75% of IL-9 transgenic animals and was dependent on the presence of IL-4 and IL-13. In contrast, T cell lymphomas developed independently of the other Th2 cytokines, with the generation of rapidly proliferating CD8(+) or CD4(+)CD8(+) T cell clones that arose in the thymus before infiltrating both lymphoid and nonlymphoid tissues. Our data highlight potentially important new roles for IL-9, through its regulation of downstream Th2 effector cytokines, in autoantibody production and in hydronephrosis.  相似文献   

11.
Eosinophils are primarily thought of as terminal effectors of allergic responses and of parasite elimination. However, limited studies suggest a more discrete immunomodulatory role for this leukocyte during these inflammatory responses. In this investigation, we highlight the potential of eosinophils to act as APCs and thus modulators of allergic responses by influencing Th2 cell function. In response to Ag provocation of the allergic lung, eosinophils rapidly trafficked to sites of Ag deposition (airways lumen) and presentation (lung-associated lymph nodes and T cell-rich paracortical zones). Eosinophils from the allergic lung expressed class II MHC peptides, T cell costimulatory molecules (CD80 and CD86), and rapidly internalized and processed Ag that was sampled from within the airway lumen. Ag-loaded eosinophils promoted the production of IL-4, IL-5, and IL-13 in cocultures with in vitro-polarized Th2 cells and induced IL-5 production in a dose-dependent manner from Ag-specific CD4(+) T cells isolated from allergic mice. In addition, Ag-loaded eosinophils primed for Th2 cell-driven allergic disease of the lung when transferred to naive mice. Thus, eosinophils have the potential to not only activate Th2 cells to release disease-modulating cytokines but also to assist in priming the immune system for allergic responses. This investigation highlights the potential of eosinophils to not only act as terminal effector cells but also to actively modulate allergic inflammation by amplifying Th2 cell responses.  相似文献   

12.
Regulatory T cells (Treg) play a decisive role in many diseases including asthma and allergen-induced lung inflammation. However, little progress has been made developing new therapeutic strategies for pulmonary disorders. In the current study we demonstrate that cytokine:antibody complexes of IL-2 and anti-IL-2 mAb reduce the severity of allergen-induced inflammation in the lung by expanding Tregs in vivo. Unlike rIL-2 or anti-IL-2 mAb treatment alone, IL-2:anti-IL-2 complexes dampened airway inflammation and eosinophilia while suppressing IL-5 and eotaxin-1 production. Mucus production, airway hyperresponsiveness to methacholine, and parenchymal tissue inflammation were also dramatically reduced following IL-2:anti-IL-2 treatment. The suppression in allergic airway disease was associated with a marked expansion of Tregs (IL-10(+)CD4(+)CD25(+) and Foxp3(+)CD4(+)CD25(+)) in the tissues, with a corresponding decrease in effector T cell responses. The ability of IL-2:anti-IL-2 complexes to suppress airway inflammation was dependent on Treg-derived IL-10, as IL-10(+/+), but not IL-10(-/-) Tregs, were capable of mediating the suppression. Furthermore, a therapeutic protocol using a model of established airway allergy highlighted the ability of IL-2:anti-IL-2 complexes to expand Tregs and prevent successive airway inflammation and airway hyperresponsiveness. This study suggests that endogenous Treg therapy may be a useful tool to combat the rising incidence of allergic airway disease.  相似文献   

13.
Allergic asthma is characterized by Th2 type inflammation, leading to airway hyperresponsivenes, mucus hypersecretion and tissue remodeling. S-Nitrosoglutathione reductase (GSNOR) is an alcohol dehydrogenase involved in the regulation of intracellular levels of S-nitrosothiols. GSNOR activity has been shown to be elevated in human asthmatic lungs, resulting in diminished S-nitrosothiols and thus contributing to increased airway hyperreactivity. Using a mouse model of allergic airway inflammation, we report that intranasal administration of a new selective inhibitor of GSNOR, SPL-334, caused a marked reduction in airway hyperreactivity, allergen-specific T cells and eosinophil accumulation, and mucus production in the lungs in response to allergen inhalation. Moreover, SPL-334 treatment resulted in a significant decrease in the production of the Th2 cytokines IL-5 and IL-13 and the level of the chemokine CCL11 (eotaxin-1) in the airways. Collectively, these observations reveal that GSNOR inhibitors are effective not only in reducing airway hyperresponsiveness but also in limiting lung inflammatory responses mediated by CD4+ Th2 cells. These findings suggest that the inhibition of GSNOR may provide a novel therapeutic approach for the treatment of allergic airway inflammation.  相似文献   

14.
Asthma is a chronic disease of the lung resulting from airway obstruction. Although the initiating causes are not entirely clear, the airway inflammation in asthma is associated with Th2 lymphocytes and their cytokines, particularly IL-4, which play a prominent role in this disease by regulating airway hyperresponsiveness, eosinophil activation, and IgE synthesis. Historically, complement was not thought to contribute to the pathogenesis of asthma. However, using C3-deficient mice in an allergen-induced model of pulmonary allergy, we demonstrate that complement may impact key features of this disease. When challenged with allergen, mice deficient in C3 exhibit diminished airway hyperresponsiveness and lung eosinophilia. Furthermore, these mice also have dramatically reduced numbers of IL-4-producing cells and attenuated Ag-specific IgE and IgG1 responses. Collectively, these results demonstrate that C3-deficient mice have significantly altered allergic lung responses and indicate a role for the complement system in promoting Th2 effector functions in asthma.  相似文献   

15.
We have demonstrated that Valpha24(+)Vbeta11(+) invariant (Valpha24(+)i) NKT cells from patients with allergic asthma express CCR9 at high frequency. CCR9 ligand CCL25 induces chemotaxis of asthmatic Valpha24(+)i NKT cells but not the normal cells. A large number of CCR9-positive Valpha24(+)i NKT cells are found in asthmatic bronchi mucosa, where high levels of Th2 cytokines are detected. Asthmatic Valpha24(+)i NKT cells, themselves Th1 biased, induce CD3(+) T cells into an expression of Th2 cytokines (IL-4 and IL-13) in cell-cell contact manner in vitro. CD226 are overexpressed on asthmatic Valpha24(+)i NKT cells. CCL25/CCR9 ligation causes directly phosphorylation of CD226, indicating that CCL25/CCR9 signals can cross-talk with CD226 signals to activate Valpha24(+)i NKT cells. Prestimulation with immobilized CD226 mAb does not change ability of asthmatic Valpha24(+)i NKT cells to induce Th2-cytokine production, whereas soluble CD226 mAb or short hairpin RNA of CD226 inhibits Valpha24(+)i NKT cells to induce Th2-cytokine production by CD3(+) T cells, indicating that CD226 engagement is necessary for Valpha24(+)i NKT cells to induce Th2 bias of CD3(+) T cells. Our results are providing with direct evidence that aberration of CCR9 expression on asthmatic Valpha24(+)i NKT cells. CCL25 is first time shown promoting the recruitment of CCR9-expressing Valpha24(+)i NKT cells into the lung to promote other T cells to produce Th2 cytokines to establish and develop allergic asthma. Our findings provide evidence that abnormal asthmatic Valpha24(+)i NKT cells induce systemically and locally a Th2 bias in T cells that is at least partially critical for the pathogenesis of allergic asthma.  相似文献   

16.
Lack of sufficient IL-12 production has been suggested to be one of the basic underlying mechanisms in atopy, but a potential role of IL-12 in established allergic airway disease remains unclear. We took advantage of a mouse model of experimental asthma to study the role of IL-12 during the development of bronchial inflammation. Administration of anti-IL-12p35 or anti-IL-12p40 mAb to previously OVA-sensitized BALB/c mice concomitantly with exposure to nebulized OVA, abolished both the development of bronchial hyperresponsiveness to metacholine as well as the eosinophilia in bronchoalveolar lavage fluid and peripheral blood. Anti-IL-12 treatment reduced CD4(+) T cell numbers and IL-4, IL-5, and IL-13 levels in the bronchoalveolar lavage fluid and the mRNA expression of IL-10, eotaxin, RANTES, MCP-1, and VCAM-1 in the lung. Anti-IL-12p35 treatment failed to show these effects in IFN-gamma knockout mice pointing to the essential role of IFN-gamma in IL-12-induced effects. Neutralization of IL-12 during the sensitization process aggravated the subsequent development of allergic airway inflammation. These data together with recent information on the role of dendritic cells in both the sensitization and effector phase of allergic respiratory diseases demonstrate a dual role of IL-12. Whereas IL-12 counteracts Th2 sensitization, it contributes to full-blown allergic airway disease upon airway allergen exposure in the postsensitization phase, with enhanced recruitment of CD4(+) T cells and eosinophils and with up-regulation of Th2 cytokines, chemokines, and VCAM-1. IFN-gamma-producing cells or cells dependent on IFN-gamma activity, play a major role in this unexpected proinflammatory effect of IL-12 in allergic airway disease.  相似文献   

17.
Chronic allergic asthma is characterized by Th2-typed inflammation, and contributes to airway remodeling and the deterioration of lung function. Viticis Fructus (VF) has long been used in China and Korea as a traditional herbal remedy for treating various inflammatory diseases. Previously, we have isolated a novel phytochemical, pyranopyran-1, 8-dione (PPY), from VF. This study was conducted to evaluate the ability of PPY to prevent airway inflammation and to attenuate airway responses in a cockroach allergen-induced asthma model in mice. The mice sensitized to and challenged with cockroach allergen were treated with oral administration of PPY. The infiltration of total cells, eosinophils and lymphocytes into the BAL fluid was significantly inhibited in cockroach allergen-induced asthma mice treated with PPY (1, 2, or 10 mg/kg). Th2 cytokines and chemokine, such as IL-4, IL-5, IL-13 and eotaxin in BAL fluid were also reduced to normal levels following treatment with PPY. In addition, the levels of IgE were also markedly suppressed after PPY treatment. Histopathological examination demonstrated that PPY substantially inhibited eosinophil infiltration into the airway, goblet cell hyperplasia and smooth muscle hypertrophy. Taken together, these results demonstrate that PPY possesses a potent efficacy on controlling allergic asthma response such as airway inflammation and remodeling.  相似文献   

18.
Flt3 ligand (Flt3-L) is a growth factor for dendritic cells and induces type 1 T cell responses. We recently reported that Flt3-L prevented OVA-induced allergic airway inflammation and suppressed late allergic response and airway hyper-responsiveness (AHR). In the present study we examined whether Flt3-L reversed allergic airway inflammation in an established model of asthma. BALB/c mice were sensitized and challenged with OVA, and AHR to methacholine was established. Then mice with AHR were randomized and treated with PBS or 6 microg of Flt3-L i.p. for 10 days. Pulmonary functions and AHR to methacholine were examined after rechallenge with OVA. Treatment with Flt3-L of presensitized mice significantly suppressed (p < 0.001) the late allergic response, AHR, bronchoalveolar lavage fluid total cellularity, absolute eosinophil counts, and inflammation in the lung tissue. There was a significant decrease in proinflammatory cytokines (TNF-alpha, IL-4, and IL-5) in bronchoalveolar lavage fluid, with a significant increase in serum IL-12 and a decrease in serum IL-5 levels. There was no significant effect of Flt3-L treatment on serum IL-4 and serum total IgE levels. Sensitization with OVA significantly increased CD11b(+)CD11c(+) cells in the lung, and this phenomenon was not significantly affected by Flt3-L treatment. These data suggest that Flt3-L can reverse allergic airway inflammation and associated changes in pulmonary functions in murine asthma model.  相似文献   

19.
CD4+ T cells, particularly Th2 cells, play a pivotal role in allergic airway inflammation. However, the requirements for interactions between CD4+ and CD8+ T cells in airway allergic inflammation have not been delineated. Sensitized and challenged OT-1 mice in which CD8+ T cells expressing the transgene for the OVA(257-264) peptide (SIINFEKL) failed to develop airway hyperresponsiveness (AHR), airway eosinophilia, Th2 cytokine elevation, or goblet cell metaplasia. OT-1 mice that received naive CD4+IL-4+ T cells but not CD4+IL-4- T cells before sensitization developed all of these responses to the same degree as wild-type mice. Moreover, recipients of CD4+IL-4+ T cells developed significant increases in the number of CD8+IL-13+ T cells in the lung, whereas sensitized OT-1 mice that received primed CD4+ T cells just before challenge failed to develop these responses. Sensitized CD8-deficient mice that received CD8+ T cells from OT-1 mice that received naive CD4+ T cells before sensitization increased AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged with allergen. In contrast, sensitized CD8-deficient mice receiving CD8+ T cells from OT-1 mice without CD4+ T cells developed reduced AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged. These data suggest that interactions between CD4+ and CD8+ T cells, in part through IL-4 during the sensitization phase, are essential to the development of CD8+IL-13+ T cell-dependent AHR and airway allergic inflammation.  相似文献   

20.
To determine some early signs connected with the increased risk of future allergy development, gene expression and production of selected cytokines were tested in children of allergic mothers and compared with newborns of healthy mothers. Expression of IL-1β, IL-2, IL-4, IL-8, IL-10, IL-13, IFN-γ, TNF-α, TGF-β and EGF was tested in cord blood cells using real-time PCR and production of these cytokines was evaluated in cord sera by ELISA. Gene expression of IL-2, IL-4, IL-8, IFN-γ, IL-1β, TNF-α and TGF-β was decreased and that of IL-10, IL-13 and EGF increased in children of allergic mothers in comparison with those of healthy mothers. Significant differences in sera of healthy and allergic groups were only in IL-10 and EGF. Different relationship among serum cytokine levels reflects the fact that the cytokines are not produced only by blood cells. Significantly decreased production of EGF in newborns of allergic mothers could negatively influence maturation of mucosal membranes of these children and support thus their easier allergization. Allergic phenotype pointing to the bias to TH2 response and to possibly impaired intestine maturation was apparent already on the level of cord blood and could serve as a predictive sign of increased allergy risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号