首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LEPA is one of the most conserved translation factors and is found from bacteria to higher plants. However, the physiological function of the chloroplast LEPA homolog in higher plants remains unknown. Herein, we demonstrate the physiological role of cpLEPA in enabling efficient photosynthesis in higher plants. The cplepa-1 mutant displays slightly high chlorophyll fluorescence and pale green phenotypes under normal growth conditions. The growth of the cplepa-1 mutant is reduced when grown on soil, and greater reduction is observed under intense light illumination. Photosynthetic activity is impaired in the cplepa-1 mutants, which is reflected in the decreased steady-state levels of chloroplast proteins. In vivo protein labeling experiments explained the decrease in the steady-state levels of chloroplast proteins. An abnormal association of the chloroplast-encoded mRNAs with ribosomes suggests that the protein synthesis deficiencies in cplepa-1 are due to defects in translation initiation in the chloroplasts. The cpLEPA protein appears to be an essential translation factor that promotes the efficiency of chloroplast protein synthesis.  相似文献   

2.
Changes in Chloroplast mRNA Stability during Leaf Development   总被引:21,自引:3,他引:18       下载免费PDF全文
  相似文献   

3.
Arabidopsis thaliana chloroplasts contain at least two 3′ to 5′ exoribonucleases, polynucleotide phosphorylase (PNPase) and an RNase R homolog (RNR1). PNPase has been implicated in both mRNA and 23S rRNA 3′ processing. However, the observed maturation defects do not affect chloroplast translation, suggesting that the overall role of PNPase in maturation of chloroplast rRNA is not essential. Here, we show that this role can be largely ascribed to RNR1, for which homozygous mutants germinate only on sucrose-containing media, and have white cotyledons and pale green rosette leaves. Accumulation of chloroplast-encoded mRNAs and tRNAs is unaffected in such mutants, suggesting that RNR1 activity is either unnecessary or redundant for their processing and turnover. However, accumulation of several chloroplast rRNA species is severely affected. High-resolution RNA gel blot analysis, and mapping of 5′ and 3′ ends, revealed that RNR1 is involved in the maturation of 23S, 16S and 5S rRNAs. The 3′ extensions of the accumulating 5S rRNA precursors can be efficiently removed in vitro by purified RNR1, consistent with this view. Our data suggest that decreased accumulation of mature chloroplast ribosomal RNAs leads to a reduction in the number of translating ribosomes, ultimately compromising chloroplast protein abundance and thus plant growth and development.  相似文献   

4.
5.
6.
7.

Key message

Plant RbgA GTPase is targeted to chloroplasts and co-fractionated with chloroplast ribosomes, and plays a role in chloroplast rRNA processing and/or ribosome biogenesis.

Abstract

Ribosome Biogenesis GTPase A (RbgA) homologs are evolutionarily conserved GTPases that are widely distributed in both prokaryotes and eukaryotes. In this study, we investigated functions of chloroplast-targeted RbgA. Nicotiana benthamiana RbgA (NbRbgA) and Arabidopsis thaliana RbgA (AtRbgA) contained a conserved GTP-binding domain and a plant-specific C-terminal domain. NbRbgA and AtRbgA were mainly localized in chloroplasts, and possessed GTPase activity. Since Arabidopsis rbgA null mutants exhibited an embryonic lethal phenotype, virus-induced gene silencing (VIGS) of NbRbgA was performed in N. benthamiana. NbRbgA VIGS resulted in a leaf-yellowing phenotype caused by disrupted chloroplast development. NbRbgA was mainly co-fractionated with 50S/70S ribosomes and interacted with the chloroplast ribosomal proteins cpRPL6 and cpRPL35. NbRbgA deficiency lowered the levels of mature 23S and 16S rRNAs in chloroplasts and caused processing defects. Sucrose density gradient sedimentation revealed that NbRbgA-deficient chloroplasts contained reduced levels of mature 23S and 16S rRNAs and diverse plastid-encoded mRNAs in the polysomal fractions, suggesting decreased protein translation activity in the chloroplasts. Interestingly, NbRbgA protein was highly unstable under high light stress, suggesting its possible involvement in the control of chloroplast ribosome biogenesis under environmental stresses. Collectively, these results suggest a role for RbgA GTPase in chloroplast rRNA processing/ribosome biogenesis, affecting chloroplast protein translation in higher plants.
  相似文献   

8.
D J McCormac  A Barkan 《The Plant cell》1999,11(9):1709-1716
To elucidate mechanisms that regulate chloroplast translation in land plants, we sought nuclear mutations in maize that disrupt the translation of subsets of chloroplast mRNAs. Evidence is presented for a nuclear gene whose function is required for the translation of the chloroplast atpB/E mRNA. A mutation in atp1 results in a failure to accumulate the chloroplast ATP synthase complex due to reduced synthesis of the AtpB subunit. This decrease in AtpB synthesis does not result from a change in atpB mRNA structure or abundance. Instead, the atpB mRNA is associated with abnormally few ribosomes in atp1-1 mutants, indicating that atp1 function is required during translation initiation or early in elongation. Previously, only one nuclear gene that is required for the translation of specific chloroplast mRNAs had been identified in a land plant. Thus, atp1 will be a useful tool for dissecting mechanisms of translational control in chloroplasts.  相似文献   

9.
Plants have varying abilities to tolerate chilling (low but not freezing temperatures), and it is largely unknown how plants such as Arabidopsis thaliana achieve chilling tolerance. Here, we describe a genome-wide screen for genes important for chilling tolerance by their putative knockout mutants in Arabidopsis thaliana. Out of 11,000 T-DNA insertion mutant lines representing half of the genome, 54 lines associated with disruption of 49 genes had a drastic chilling sensitive phenotype. Sixteen of these genes encode proteins with chloroplast localization, suggesting a critical role of chloroplast function in chilling tolerance. Study of one of these proteins RBD1 with an RNA binding domain further reveals the importance of chloroplast translation in chilling tolerance. RBD1 is expressed in the green tissues and is localized in the chloroplast nucleoid. It binds directly to 23S rRNA and the binding is stronger under chilling than at normal growth temperatures. The rbd1 mutants are defective in generating mature 23S rRNAs and deficient in chloroplast protein synthesis especially under chilling conditions. Together, our study identifies RBD1 as a regulator of 23S rRNA processing and reveals the importance of chloroplast function especially protein translation in chilling tolerance.  相似文献   

10.
To gain insight into the biogenesis of photosystem II (PSII) and to identify auxiliary factors required for this process, we characterized the mutant hcf173 of Arabidopsis thaliana. The mutant shows a high chlorophyll fluorescence phenotype (hcf) and is severely affected in the accumulation of PSII subunits. In vivo labeling experiments revealed a drastically decreased synthesis of the reaction center protein D1. Polysome association experiments suggest that this is primarily caused by reduced translation initiation of the corresponding psbA mRNA. Comparison of mRNA steady state levels indicated that the psbA mRNA is significantly reduced in hcf173. Furthermore, the determination of the psbA mRNA half-life revealed an impaired RNA stability. The HCF173 gene was identified by map-based cloning, and its identity was confirmed by complementation of the hcf phenotype. HCF173 encodes a protein with weak similarities to the superfamily of the short-chain dehydrogenases/reductases. The protein HCF173 is localized in the chloroplast, where it is mainly associated with the membrane system and is part of a higher molecular weight complex. Affinity chromatography of an HCF173 fusion protein uncovered the psbA mRNA as a component of this complex.  相似文献   

11.
X. Chen  C. L. Simpson  K. L. Kindle    D. B. Stern 《Genetics》1997,145(4):935-943
A suppressor of a translation initiation defect caused by an AUG to AUU mutation in the Chlamydomonas reinhardtii chloroplast petD gene was isolated, defining a nuclear locus that we have named SIM30. A dominant mutant allele at this locus, sim30-1d, was found to increase the translation initiation rate of the mutant petD mRNA. sim30-1d was also able to suppress the translational defect caused by an AUG to AUC mutation in the petD gene, and an AUG to AUU mutation in the chloroplast petA gene. We therefore suggest that the SIM30 gene may encode a general chloroplast translation factor. The ability of sim30-1d to suppress the petD AUG to AUU mutation is diminished in the presence of one or more antibiotic resistance markers located within the 16S and 23S rRNAs, suggesting that the activity of the sim30-1d gene product in translation initiation may involve interaction with ribosomal subunits.  相似文献   

12.
The RimM protein in Escherichia coli is associated with free 30S ribosomal subunits but not with 70S ribosomes. A DeltarimM mutant is defective in 30S maturation and accumulates 17S rRNA. To study the interaction of RimM with the 30S and its involvement in 30S maturation, RimM amino acid substitution mutants were constructed. A mutant RimM (RimM-YY-->AA), containing alanine substitutions for two adjacent tyrosines within the PRC beta-barrel domain, showed a reduced binding to 30S and an accumulation of 17S rRNA compared to wild-type RimM. The (RimM-YY-->AA) and DeltarimM mutants had significantly lower amounts of polysomes and also reduced levels of 30S relative to 50S compared to a wild-type strain. A mutation in rpsS, which encodes r-protein S19, suppressed the polysome- and 16S rRNA processing deficiencies of the RimM-YY-->AA but not that of the DeltarimM mutant. A mutation in rpsM, which encodes r-protein S13, suppressed the polysome deficiency of both rimM mutants. Suppressor mutations, found in either helices 31 or 33b of 16S rRNA, improved growth of both the RimM-YY-->AA and DeltarimM mutants. However, they suppressed the 16S rRNA processing deficiency of the RimM-YY-->AA mutant more efficiently than that of the DeltarimM mutant. Helices 31 and 33b are known to interact with S13 and S19, respectively, and S13 is known to interact with S19. A GST-RimM but not a GST-RimM(YY-->AA) protein bound strongly to S19 in 30S. Thus, RimM likely facilitates maturation of the region of the head of 30S that contains S13 and S19 as well as helices 31 and 33b.  相似文献   

13.
Many of the chloroplast mRNAs possess Shine-Dalgarno (SD)-like sequences (typically GGAGG) in the 5'-untranslated regions, but the position is highly variable. Using a homologous in vitro translation system, we assessed the role for translation of SD-like sequences in four tobacco chloroplast mRNAs. The rbcL mRNA has a typical SD-like sequence at a position similar to the conserved position (-12 to -4 with respect to the start codon) observed in E. coli, and this sequence was found to be essential for translation. This was also the case for the atpE mRNA. However, SD-like sequences in the rps12 mRNA and in the petB mRNA is located far from (-44 to -42) and too close to (-5 to -2) the initiation codon, respectively, and these sequences were not essential for translation. These results indicate that functional SD-like sequences are located around 10 nucleotides upstream from the translational start codon. Competition assays confirmed that a functional SD-like sequence interacts with the 3' terminus of chloroplast 16S rRNA.  相似文献   

14.
T Hirose  M Sugiura 《The EMBO journal》1996,15(7):1687-1695
Translational regulation is an important step of gene expression in chloroplasts. To analyze biochemical mechanisms of translational regulation unique to higher plant chloroplasts, an in vitro translation system has been developed from tobacco chloroplasts. Conditions for chloroplast extraction and the in vitro translation reaction have been optimized with a tobacco psbA-lacZ fusion mRNA. The in vitro system supports accurate translation of a variety of chloroplasts mRNAs. Using a series of mutant psbA mRNAs, we showed that three elements within the 5'-untranslated region of the mRNA are required for translation. Two of them are complementary to the 3'-terminus of chloroplast 16S rRNA (termed RBS1 and RBS2) and the other is an AU-rich sequence (UAAAUAAA) located between RBS1 and RBS2 and is termed the AU box. mRNA competition experiments using the in vitro translation reaction and gel mobility shift assays revealed the existence of a trans-acting factor(s) for translation and its possible interaction with the AU box. We propose a model for the initiation of psbA translation whereby RBS1 and RBS2 bind cooperatively to the 3'-end of 16S rRNA resulting in looping out of the AU box, which facilitates the interaction of a trans-acting factor(s).  相似文献   

15.
Fisk DG  Walker MB  Barkan A 《The EMBO journal》1999,18(9):2621-2630
The maize nuclear gene crp1 is required for the translation of the chloroplast petA and petD mRNAs and for the processing of the petD mRNA from a polycistronic precursor. In order to understand the biochemical role of the crp1 gene product and the interconnections between chloroplast translation and RNA metabolism, the crp1 gene and cDNA were cloned. The predicted crp1 gene product (CRP1) is related to nuclear genes in fungi that play an analogous role in mitochondrial gene expression, suggesting an underlying mechanistic similarity. Analysis of double mutants that lack both chloroplast ribosomes and crp1 function indicated that CRP1 activates a site-specific endoribonuclease independently of any role it plays in translation. Antibodies prepared to recombinant CRP1 were used to demonstrate that CRP1 is localized to the chloroplast stroma and that it is a component of a multisubunit complex. The CRP1 complex is not associated detectably with either chloroplast membranes or chloroplast ribosomes. Models for CRP1 function and its relationship to other activators of organellar translation are discussed.  相似文献   

16.
17.
Temperature-sensitive mutants defective in 60S ribosomal subunit protein L16 of Saccharomyces cerevisiae were isolated through hydroxylamine mutagenesis of the RPL16B gene and plasmid shuffling. Two heat-sensitive and two cold-sensitive isolates were characterized. The growth of the four mutants is inhibited at their restrictive temperatures. However, many of the cells remain viable if returned to their permissive temperatures. All of the mutants are deficient in 60S ribosomal subunits and therefore accumulate translational preinitiation complexes. Three of the mutants exhibit a shortage of mature 25S rRNA, and one accumulates rRNA precursors. The accumulation of rRNA precursors suggests that ribosome assembly may be slowed in this mutant. These phenotypes lead us to propose that mutants containing the rpl16b alleles are defective for 60S subunit assembly rather than function. In the mutant carrying the rpl16b-1 allele, ribosomes initiate translation at the noncanonical codon AUA, at least on the rpl16b-1 mRNA, bringing to light a possible connection between the rate and the fidelity of translation initiation.  相似文献   

18.
The protein coding regions of plastid mRNAs in higher plants are generally flanked by 3' inverted repeat sequences. In spinach chloroplast mRNAs, these inverted repeat sequences can fold into stem-loop structures and serve as signals for the correct processing of the mature mRNA 3' ends. The inverted repeat sequences are also required to stabilize 5' upstream mRNA segments, and interact with chloroplast protein in vitro. To dissect the molecular components involved in chloroplast mRNA 3' end processing and stability, a spinach chloroplast protein extract containing mRNA 3' end processing activity was fractionated by FPLC and RNA affinity chromatography. The purified fraction consisted of several proteins and was capable of processing the 3' ends of the psbA, rbcL, petD and rps14 mRNAs. This protein fraction was enriched for a 28 kd RNA-binding protein (28RNP) which interacts with both the precursor and mature 3' ends of the four mRNAs. Using specific antibodies to this protein, the poly(A) RNA-derived cDNA for the 28RNP was cloned and sequenced. The predicted amino acid sequence for the 28RNP reveals two conserved RNA-binding domains, including the consensus sequences RNP-CS1 and CS2, and a novel acidic and glycine-rich N-terminal domain. The accumulation of the nuclear-encoded 28RNP mRNA and protein are developmentally regulated in spinach cotyledons, leaves, root and stem, and are enhanced during light-dependent chloroplast development. The general correlation between accumulation of the 28RNP and plastid mRNA during development, together with the result that depletion of the 28RNP from the chloroplast protein extract interferes with the correct 3' end processing of several chloroplast mRNAs, suggests that the 28RNP is required for plastid mRNA 3' end processing and/or stability.  相似文献   

19.
A well-established feature of the translation initiation region, which attracts the ribosomes to the prokaryotic mRNAs, is a purine rich area called Shine/Dalgarno sequence (SD). There are examples of various other sequences, which despite having no similarity to an SD sequence are capable of enhancing and/or initiating translation. The mechanisms by which these sequences affect translation remain unclear, but a base pairing between mRNA and 16S ribosomal RNA (rRNA) is proposed to be the likely mechanism. In this study, using a computational approach, we identified a non-SD signal found specifically in the translation initiation regions of Escherichia coli mRNAs, which contain super strong SD sequences. Nine of the 11 E. coli translation initiation regions, which were previously identified for having super strong SD sequences, also contained six or more nucleotides complementary to box-17 on the 16S rRNA (nucleotides 418-554). Mutational analyses of those initiation sequences indicated that when complementarity to box-17 was eliminated, the efficiency of the examined sequences to mediate the translation of chloramphenicol acetyltransferase (CAT) mRNA was reduced. The results suggest that mRNA sequences with complementarity to box-17 of 16S rRNA may function as enhancers for translation in E. coli.  相似文献   

20.
Yu F  Liu X  Alsheikh M  Park S  Rodermel S 《The Plant cell》2008,20(7):1786-1804
The Arabidopsis thaliana yellow variegated2 (var2) mutant is variegated due to lack of a chloroplast FtsH-like metalloprotease (FtsH2/VAR2). We have generated suppressors of var2 variegation to gain insight into factors and pathways that interact with VAR2 during chloroplast biogenesis. Here, we describe two such suppressors. Suppression of variegation in the first line, TAG-FN, was caused by disruption of the nuclear gene (SUPPRESSOR OF VARIEGATION1 [SVR1]) for a chloroplast-localized homolog of pseudouridine (Psi) synthase, which isomerizes uridine to Psi in noncoding RNAs. svr1 single mutants were epistatic to var2, and they displayed a phenotypic syndrome that included defects in chloroplast rRNA processing, reduced chloroplast translation, reduced chloroplast protein accumulation, and elevated chloroplast mRNA levels. In the second line (TAG-IE), suppression of variegation was caused by a lesion in SVR2, the gene for the ClpR1 subunit of the chloroplast ClpP/R protease. Like svr1, svr2 was epistatic to var2, and clpR1 mutants had a phenotype that resembled svr1. We propose that an impairment of chloroplast translation in TAG-FN and TAG-IE decreased the demand for VAR2 activity during chloroplast biogenesis and that this resulted in the suppression of var2 variegation. Consistent with this hypothesis, var2 variegation was repressed by chemical inhibitors of chloroplast translation. In planta mutagenesis revealed that SVR1 not only played a role in uridine isomerization but that its physical presence was necessary for proper chloroplast rRNA processing. Our data indicate that defects in chloroplast rRNA processing are a common, but not universal, molecular phenotype associated with suppression of var2 variegation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号