首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The capacity to rectify DNA double-strand breaks (DSBs) is crucial for the survival of all species. DSBs can be repaired either by homologous recombination (HR) or non-homologous end joining (NHEJ). The long-standing notion that bacteria rely solely on HR for DSB repair has been overturned by evidence that mycobacteria and other genera have an NHEJ system that depends on a dedicated DNA ligase, LigD, and the DNA-end-binding protein Ku. Recent studies have illuminated the role of NHEJ in protecting the bacterial chromosome against DSBs and other clastogenic stresses. There is also emerging evidence of functional crosstalk between bacterial NHEJ proteins and components of other DNA-repair pathways. Although still a young field, bacterial NHEJ promises to teach us a great deal about the nexus of DNA repair and bacterial pathogenesis.  相似文献   

2.
DNA double strand breaks (DSB)s often require end processing prior to joining during their repair by non-homologous end joining (NHEJ). Although the yeast proteins, Pol4, a Pol X family DNA polymerase, and Rad27, a nuclease, participate in the end processing reactions of NHEJ, the mechanisms underlying the recruitment of these factors to DSBs are not known. Here we demonstrate that Nej1, a NHEJ factor that interacts with and modulates the activity of the NHEJ DNA ligase complex (Dnl4/Lif1), physically and functionally interacts with both Pol4 and Rad27. Notably, Nej1 and Dnl4/Lif1, which also interacts with both Pol4 and Rad27, independently recruit the end processing factors to in vivo DSBs via mechanisms that are additive rather than redundant. As was observed with Dnl4/Lif1, the activities of both Pol4 and Rad27 were enhanced by the interaction with Nej1. Furthermore, Nej1 increased the joining of incompatible DNA ends in reconstituted reactions containing Pol4, Rad27 and Dnl4/Lif1, indicating that the stimulatory activities of Nej1 and Dnl4/Lif1 are also additive. Together our results reveal novel roles for Nej1 in the recruitment of Pol4 and Rad27 to in vivo DSBs and the coordination of the end processing and ligation reactions of NHEJ.  相似文献   

3.
Mechanism of DNA double-strand break repair by non-homologous end joining   总被引:14,自引:0,他引:14  
The repair of DNA double-strand breaks (DSBs) is critical for maintaining genome stability. Although the non-homologous end joining (NHEJ) pathway frequently results in minor changes in DNA sequence at the break site and occasionally the joining of previously unlinked DNA molecules, it is a major contributor to cell survival following exposure of mammalian cells to agents that cause DSBs. This repair mechanism is conserved in lower eukaryotes and in some prokaryotes although the majority of DSBs are repaired by recombinational repair pathways in these organisms. Here we will describe the biochemical properties of NHEJ factors from bacteria, Saccharomyces cerevisiae and mammals, and how physical and functional interactions among these factors co-ordinate the repair of DSBs.  相似文献   

4.
Non-homologous end joining as a mechanism of DNA repair.   总被引:3,自引:0,他引:3  
D E Barnes 《Current biology : CB》2001,11(12):R455-R457
  相似文献   

5.
Nonhomologous end joining is one of the major pathways by which cells repair double-strand breaks, and the XRCC4-DNA ligase IV complex is required for the ligation step. To better understand the regulation and stability of XRCC4 and DNA ligase IV, we investigated the ubiquitination status of these two proteins. We identified a predominantly monoubiquitinated form of XRCC4, and higher molecular weight forms of ubiquitinated XRCC4 were detected in lower abundance. In response to etoposide-induced DNA damage, ubiquitinated XRCC4 became more pronounced and was additionally phosphorylated. We confirmed that DNA ligase IV is unstable in the absence of XRCC4, with a half-life of approximately 30-90 min. Unlike XRCC4, we did not detect ubiquitinated forms of DNA ligase IV, and we found that the presence of XRCC4 stabilized DNA ligase IV more significantly than proteasome inhibitors. Monoubiquitination of XRCC4 may play a critical role in the regulation of nonhomologous end joining.  相似文献   

6.
A complex of two proteins, Xrcc4 and DNA ligase IV, plays a fundamental role in DNA non-homologous end joining (NHEJ), a cellular function required for double-strand break repair and V(D)J recombination. Here we report the crystal structure of human Xrcc4 bound to a polypeptide that corresponds to the DNA ligase IV sequence linking its two BRCA1 C-terminal (BRCT) domains. In the complex, a single ligase chain binds asymmetrically to an Xrcc4 dimer. The helical tails of Xrcc4 undergo a substantial conformational change relative to the uncomplexed protein, forming a coiled coil that unwinds upon ligase binding, leading to a flat interaction surface. A buried network of charged hydrogen bonds surrounded by extensive hydrophobic contacts explains the observed tightness of the interaction. The strong conservation of residues at the interface between the two proteins provides evidence that the observed mode of interaction has been maintained in NHEJ throughout evolution.  相似文献   

7.
DNA双链断裂的非同源末端连接修复   总被引:1,自引:0,他引:1  
严振鑫  徐冬一 《生命科学》2014,(11):1157-1165
细胞内普遍存在的DNA双链断裂(DSB)可通过同源重组(HR)或非同源末端连接(NHEJ)修复。由于HR仅在存在相同染色体作为模板的时候进行,因此,NHEJ通常为主要的修复方式。在NHEJ中,DSB末端首先由Ku识别,接着由核酸酶、聚合酶在Ku与DNA-PKcs协助下加工,并由连接酶IVXRCC4-XLF连接。NHEJ底物类型多样,末端的修复常包含反复加工的过程,导致修复产物通常无法复原损伤前的序列。虽然无法确保准确修复DNA,NHEJ仍对维持基因组的稳定性具有重要的意义。对NHEJ的研究有助于理解癌症的发生机制并将促进癌症的治疗。  相似文献   

8.
Ku protein binds to DNA ends and is a cofactor for the DNA-dependent protein kinase. Both of these components are involved in DNA double-strand break repair, but it has not been clear if they function indirectly, by sensing DNA damage and activating other factors, or if they are more directly involved in the processing and rejoining of DNA breaks. We demonstrate that intermolecular ligation of DNA fragments is highly dependent on Ku under conditions designed to mimic those existing in the cell. This effect of Ku is specific to eukaryotic DNA ligases. Ku protein, therefore, has an activity consistent with a direct role in rejoining DNA breaks and independent of DNA-dependent protein kinase.  相似文献   

9.
Bacterial nonhomologous end joining (NHEJ) is a recently described DNA repair pathway best characterized in mycobacteria. Bacterial NHEJ proteins LigD and Ku have been analyzed biochemically, and their roles in linear plasmid repair in vivo have been verified genetically; yet the contributions of NHEJ to repair of chromosomal DNA damage are unknown. Here we use an extensive set of NHEJ- and homologous recombination (HR)-deficient Mycobacterium smegmatis strains to probe the importance of HR and NHEJ in repairing diverse types of chromosomal DNA damage. An M. smegmatis Delta recA Delta ku double mutant has no apparent growth defect in vitro. Loss of the NHEJ components Ku and LigD had no effect on sensitivity to UV radiation, methyl methanesulfonate, or quinolone antibiotics. NHEJ deficiency had no effect on sensitivity to ionizing radiation in logarithmic- or early-stationary-phase cells but was required for ionizing radiation resistance in late stationary phase in 7H9 but not LB medium. In addition, NHEJ components were required for repair of I-SceI mediated chromosomal double-strand breaks (DSBs), and in the absence of HR, the NHEJ pathway rapidly mutates the chromosomal break site. The molecular outcomes of NHEJ-mediated chromosomal DSB repair involve predominantly single-nucleotide insertions at the break site, similar to previous findings using plasmid substrates. These findings demonstrate that prokaryotic NHEJ is specifically required for DSB repair in late stationary phase and can mediate mutagenic repair of homing endonuclease-generated chromosomal DSBs.  相似文献   

10.
Cells of mouse knockout cell lines for Ku80 (now known as Xrcc5), Ku70 (now known as G22p1), DNA-PKcs (now known as Prkdc) and PARP (now known as Adprt) were synchronized in G1 phase and exposed to very low fluences of alpha particles. The frequency of gross chromosomal aberrations was scored at the first postirradiation metaphase. At the two lowest doses examined, aberrations were induced in 4-9% of wild-type cells and 36-55% of Xrcc5-/- cells, whereas only 2-3% of the nuclei were traversed by an alpha particle and thus received any radiation exposure. G22p1-/- cells responded similarly to Xrcc5-/- cells, whereas Prkdc-/- and Adprt-/- cells showed an intermediate effect. The frequency of aberrations per nuclear traversal increased approximately 30-fold for Xrcc5-/- and G22p1-/- cells at the lowest mean dose examined (0.17 cGy), compared with 10-fold in Prkdc-/- cells and 3-fold in wild-type cells. Based on these and other findings, we hypothesize that the marked sensitization of repair-deficient bystander cells to the induction of chromosomal aberrations is a consequence of unrejoined DNA double-strand breaks occurring as a result of clustered damage arising from opposed oxidative lesions and single-strand breaks.  相似文献   

11.
Nonhomologous end joining (NHEJ) is the major DNA double-strand break (DSB) repair pathway in mammalian cells. A critical step in this process is DNA ligation, involving the Xrcc4-DNA ligase IV complex. DNA end processing is often a prerequisite for ligation, but the coordination of these events is poorly understood. We show that polynucleotide kinase (PNK), with its ability to process ionizing radiation-induced 5'-OH and 3'-phosphate DNA termini, functions in NHEJ via an FHA-dependent interaction with CK2-phosphorylated Xrcc4. Analysis of the PNK FHA-Xrcc4 interaction revealed that the PNK FHA domain binds phosphopeptides with a unique selectivity among FHA domains. Disruption of the Xrcc4-PNK interaction in vivo is associated with increased radiosensitivity and slower repair kinetics of DSBs, in conjunction with a diminished efficiency of DNA end joining in vitro. Therefore, these results suggest a new role for Xrcc4 in the coordination of DNA end processing with DNA ligation.  相似文献   

12.
Cavero S  Chahwan C  Russell P 《Genetics》2007,175(2):963-967
The accurate repair of DNA double-strand breaks is essential for cell survival and maintenance of genome integrity. Here we describe xlf1+, a gene in the fission yeast Schizosaccharomyces pombe that is required for repair of double-strand breaks by nonhomologous end joining during G1 phase of the cell cycle. Xlf1 is the ortholog of budding yeast Nej1 and human XLF/Cernunnos proteins.  相似文献   

13.
14.
Mycobacterium smegmatis was used to study the relationship between DNA repair processes involving RecA and nonhomologous end joining (NHEJ). The effect of gene deletions in recA and/or in two genes involved in NHEJ (ku and ligD) was tested on the ability of bacteria to join breaks in plasmids transformed into them and in their response to chemicals that damage DNA. The results provide in vivo evidence that only NHEJ is required for the repair of noncompatible DNA ends. By contrast, the response of mycobacteria to mitomycin C preferentially involved a RecA-dependent pathway.  相似文献   

15.
Li P  Li J  Li M  Dou K  Zhang MJ  Suo F  Du LL 《DNA Repair》2012,11(2):120-130
Non-homologous end joining (NHEJ) is an important mechanism for repairing DNA double-strand breaks (DSBs). The fission yeast Schizosaccharomyces pombe has a conserved set of NHEJ factors including Ku, DNA ligase IV, Xlf1, and Pol4. Their roles in chromosomal DSB repair have not been directly characterized before. Here we used HO endonuclease to create a specific chromosomal DSB in fission yeast and examined the imprecise end joining events allowing cells to survive the continuous expression of HO. Our analysis showed that cell survival was significantly reduced in mutants defective for Ku, ligase IV, or Xlf1. Using Sanger sequencing and Illumina sequencing, we have characterized in depth the repair junction sequences in HO survivors. In wild type cells the majority of repair events were one-nucleotide insertions dependent on Ku, ligase IV, and Pol4. Our data suggest that fission yeast Pol4 is important for gap filling during NHEJ repair and can extend primers in the absence of terminal base pairing with the templates. In Ku and ligase IV mutants, the survivors mainly resulted from two types of alternative end joining events: one used microhomology flanking the HO site to delete sequences of hundreds to thousands of base pairs, the other rejoined the break using the HO-generated overhangs but also introduced one- or two-nucleotide base substitutions. The chromosomal repair assay we describe here should provide a useful tool for further exploration of the end joining repair mechanisms in fission yeast.  相似文献   

16.
Double-strand breaks (DSBs) are the most serious DNA damage which, if unrepaired or misrepaired, may lead to cell death, genomic instability or cancer transformation. In human cells they can be repaired mainly by non-homologous DNA end joining (NHEJ). The efficacy of NHEJ pathway was examined in normal human lymphocytes and K562 myeloid leukemic cells expressing the BCR/ABL oncogenic tyrosine kinase activity and lacking p53 tumor suppressor protein. In our studies we employed a simple and rapid in vitro DSB end joining assay based on fluorescent detection of repair products. Normal and cancer cells were able to repair DNA damage caused by restriction endonucleases, but the efficiency of the end joining was dependent on the type of cells and the structure of DNA ends. K562 cells displayed decreased NHEJ activity in comparison to normal cells for 5' complementary DNA overhang. For blunt-ended DNA there was no significant difference in end joining activity. Both kinds of cells were found about 10-fold more efficient for joining DNA substrates with compatible 5' overhangs than those with blunt ends. Our recent findings have shown that stimulation of DNA repair could be involved in the drug resistance of BCR/ABL-positive cells in anticancer therapy. For the first time the role of STI571 was investigated, a specific inhibitor of BCR/ABL oncogenic protein approved for leukemia treatment in the NHEJ pathway. Surprisingly, STI571 did not change the response of BCR/ABL-positive K562 cells in terms of NHEJ for both complementary and blunt ends. Our results suggest that the various responses of the cells to DNA damage via NHEJ can be correlated with the differences in the genetic constitution of human normal and cancer cells. However, the role of NHEJ in anticancer drug resistance in BCR/ABL-positive cells is questionable.  相似文献   

17.
18.
《Molecular cell》2023,83(9):1429-1445.e8
  1. Download : Download high-res image (198KB)
  2. Download : Download full-size image
  相似文献   

19.
Exposure of cells to ionizing radiation or radiomimetic drugs generates DNA double-strand breaks that are processed either by homologous recombination repair (HRR), or by canonical, DNA-PKcs-dependent non-homologous end-joining (C-NHEJ). Chemical or genetic inactivation of factors involved in C-NHEJ or HRR, but also their local failure in repair proficient cells, promotes an alternative, error-prone end-joining pathway that serves as backup (A-EJ). There is evidence for the involvement of Artemis endonuclease, a protein deficient in a human radiosensitivity syndrome associated with severe immunodeficiency (RS-SCID), in the processing of subsets of DSBs by HRR or C-NHEJ. It is thought that within HRR or C-NHEJ Artemis processes DNA termini at complex DSBs. Whether Artemis has a role in A-EJ remains unknown. Here, we analyze using pulsed-field gel electrophoresis (PFGE) and specialized reporter assays, DSB repair in wild-type pre-B NALM-6 lymphocytes, as well as in their Artemis−/−, DNA ligase 4−/− (LIG4−/−), and LIG4−/−/Artemis−/− double mutant counterparts, under conditions allowing evaluation of A-EJ. Our results substantiate the suggested roles of Artemis in C-NHEJ and HRR, but also demonstrate a role for the protein in A-EJ that is confirmed in Artemis deficient normal human fibroblasts. We conclude that Artemis is a nuclease participating in DSB repair by all major repair pathways.  相似文献   

20.
Cell death related nuclease 4 (CRN-4) is one of the apoptotic nucleases involved in DNA degradation in Caenorhabditis elegans. To understand how CRN-4 is involved in apoptotic DNA fragmentation, we analyzed CRN-4's biochemical properties, in vivo cell functions, and the crystal structures of CRN-4 in apo-form, Mn(2+)-bound active form, and Er(3+)-bound inactive form. CRN-4 is a dimeric nuclease with the optimal enzyme activity in cleaving double-stranded DNA in apoptotic salt conditions. Both mutational studies and the structures of the Mn(2+)-bound CRN-4 revealed the geometry of the functional nuclease active site in the N-terminal DEDDh domain. The C-terminal domain, termed the Zn-domain, contains basic surface residues ideal for nucleic acid recognition and is involved in DNA binding, as confirmed by deletion assays. Cell death analysis in C. elegans further demonstrated that both the nuclease active site and the Zn-domain are required for crn-4's function in apoptosis. Combining all of the data, we suggest a structural model where chromosomal DNA is bound at the Zn-domain and cleaved at the DEDDh nuclease domain in CRN-4 when the cell is undergoing apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号