首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preservation of calcareous nannoplankton in surface sediment samples from the Southern Ocean south of Australia and adjacent to New Zealand record a single assemblage. The dominant species are Emiliania huxleyi, Gephyrocapsa muellerae, Calcidiscus leptoporus, Helicosphaera carteri and Coccolithus pelagicus. The assemblage varies little in abundance and diversity with minor correlation to present-day overlying surface water masses and oceanic fronts. Increase in abundance of H. carteri and C. pelagicus in the region of the Subtropical Front may reflect higher nutrients associated with this front. The assemblage, although altered by dissolution, represents a warmer climatic interval than present-day with the presence of preferentially dissolved, warm-water species preserved as far south as the Polar Front. The presence of warm-water species under sub-Antarctic waters at the Polar Front is interpreted as a relic population from the Holocene climatic optimum of 10–8 ka. The absence of coccoliths in sediments poleward of the Polar Front suggests an equatorward shift of this front following the climatic optimum, resulting in increased productivity of siliceous phytoplankton associated with the colder waters and increased dissolution of coccoliths. Movement of the Subtropical Front for the same interval is not recorded in the preserved coccoliths. The more heavily calcified form of E. huxleyi which dominates the living assemblage north of the Subtropical Front is subject to dissolution in this region and is poorly preserved in the sediment assemblage.  相似文献   

2.
Quantitative study on calcareous nannofossil assemblages has been performed in high time resolution (2–3 kyr) at the Ocean Drilling Program Site 1090. The location of this site in the Southern Ocean is crucial for the comprehension of thermohaline circulation and frontal boundary dynamics, and for testing the employ of nannoflora as paleoceanographical tool. The chronologically well constrained investigated record spans between Marine Isotope Stage (MIS) 35 and 15, through an interval of global paleoclimate and paleoceanographical modification also known as mid-Pleistocene revolution (MPR). Measures of ecological (Shannon–Weaver diversity and paleoproductivity) and dissolution indices together with spectral and wavelet analyses carried out on the acquired time series provide valuable information for interpretation of data in terms of paleoecology and paleoceanography. Assemblages are mainly represented by dominant small Gephyrocapsa, common Calcidiscus leptoporus s.l., Coccolithus pelagicus s.l., Gephyrocapsa (4-5.5 μm), the extinct Pseudoemiliania lacunosa and Reticulofenestra spp. (R. asanoi and Reticulofenestra sp.). Morphotypes discriminated within Calcidiscus leptoporus s.l. and Coccolithus pelagicus s.l., reveal that they may have had different ecological preferences during Pleistocene with respect to the present. The composition and fluctuation in nannofossil assemblage and their comparison with the available Sea Surface Temperature (SST) and C-org curves suggest a primary ecological response to paleoenvironmental changes; relationships to different surface water features and boundary dynamics, as well as to different efficiencies and motions of the intermediate and deep water masses have been inferred. A more northward position of Subantarctic Front (SAF) during most of the Early Pleistocene record has been highlighted based on assemblage composition characterised by common Calcidiscus leptoporus s.l., Coccolithus pelagicus s.l., medium Gephyrocapsa (4–5.5 μm), and by the rarity or absence of Umbilicosphaera spp., Rhabdosphaera spp., Pontosphaera spp., Oolithotus fragilis. Exceptions are the more intense interglacials MIS 31, 17, and probably MIS 15, when a southward displacement of frontal system occurred, coincident with peaks in abundance of Helicosphaera spp. and Syracosphaera spp. Higher nutrient content and more dynamic conditions occurred between MIS 32 and MIS 25, in relation to shallower location of nutrient-rich Antarctic Intermediate Water (AAIW) core and to reduction of glacial–interglacial variability. A nannofossil barren interval is coincident with the known stagnation of South Atlantic deep water circulation during MIS 24, when North Atlantic Deep Water (NADW) was reduced or suppressed and an enhanced northward deep penetration of the more corrosive Circumpolar Deep Water (CPDW) took place. An event of strong instability in nutricline dynamics characterised the transition MIS 23–22 as suggested by sharp fluctuations in paleoproductivity proxies, linked to major changes in oceanographic circulation and to the first distinct increase of larger ice volumes at this time. From MIS 21 upward the nannofossil variations seem to be primarily controlled by glacial–interglacial cyclicity and temperature fluctuations. The cyclic fluctuation recognised in nannofossil abundance seems to be linked to orbitally-forced climatic variation, primarily to the obliquity periodicity recorded in the patterns of C. leptoporus intermediate (5–8 μm) and C. pelagicus pelagicus (6–10 μm); however no obvious and linear relations may be always observed between nannoflora fluctuation and Milankovitch parameters, suggesting more complex and unclear relationships between nannofossils and environmental change.  相似文献   

3.
Seven Ocean Drilling Program (ODP) sites recovered during ODP Leg 177 in the Atlantic sector of the Southern Ocean were analyzed to study the Pleistocene calcareous nannofossil record. Calcareous nannofossil events previously described from intermediate and low latitudes were identified and calibrated with available geomagnetic and stable isotope stratigraphic data. In general, Pleistocene southern high latitude calcareous nannofossil events show synchronicity with those observed from warm and temperate latitudes. The first occurrence (FO) of Emiliania huxleyi and the last occurrence (LO) of Pseudoemiliania lacunosa are observed in marine isotope stages (MIS) 8 and 12, respectively. A reversal in abundance between Gephyrocapsa muellerae and E. huxleyi is observed at MIS 5. MIS 6 is characterized by an increase in G. muellerae and MIS 7 features a dramatic decrease in the proportion of Gephyrocapsa caribbeanica. This latter species began to increase its proportions from MIS 14 to 13. The LO of Reticulofenestra asanoi is observed within subchron C1r.1r and the FO of R. asanoi occurs at the top of C1r.2r. A re-entry of medium-sized Gephyrocapsa can be identified in some cores during subchron C1r.1n. The LO of large morphotypes of Gephyrocapsa is well correlated through the studied area, and occurs during the middle-low part of subchron C1r.2r, synchronous with other oceanic regions. The FO of Calcidiscus macintyrei and FO of medium-sized Gephyrocapsa occur in the studied area close to 1.6 Ma.  相似文献   

4.
Calcareous nannoplankton assemblages from a Late Quaternary deep-sea core (GC07; 46°09′S, 146°17′E) south of Australia provide information on regional palaeoceanography and palaeoclimate changes in the Southern Ocean, in particular the movement of the Subtropical Front for the past 130 ka years. Marine Isotope Stages 1–5 are identified through changes in calcareous nannoplankton assemblages, supported by 14C dates, and oxygen isotope and %CaCO data.Two distinct assemblages are recognised: a warm water assemblage with higher abundances of Calcidiscus leptoporus, Emiliania huxleyi, Helicosphaera.carteri, Syracosphaera pulchra, Gephyrocapsa caribbeanica and Gephyrocapsa oceanica; and, a cold water assemblage with higher abundances of Gephyrocapsa muellerae and Coccolithus pelagicus. Alternation between these two assemblages downcore in GC07 reflect movement of the Subtropical Front across the location and can be correlated to Marine Isotope Stages (MIS) 1–5. Sediments with a cold water assemblage indicate the position of the Subtropical Front equatorward of the site when transitional to sub-antarctic waters were overlying the site. Conversely sediments with a warm water assemblage indicate the Subtropical Front was poleward of GC07 when warmer, subtropical waters were over the site. MIS 1 and 5 are interpreted as warmer than MIS 3 (based on species composition) with the Subtropical Front more poleward than for MIS 3. During MIS 3 the Subtropical Front is interpreted as adjacent to or immediately poleward of GC07. Some species including C. leptoporus and C. pelagicus show negative covariance and are considered to be reliable species in identifying glacial and interglacial intervals in this region.Comparison with established biostratigraphy based on calcareous nannoplankton showed the datum event for the reversal between E. huxleyi and G. muellerae of 73 ka in transitional waters is not applicable in this region. The reversal between these two species occurs between 48 and 30 cm downcore in GC07 with a 14C date of 11 020 year BP at 49–48 cm, i.e. the reversal event is younger than this date.  相似文献   

5.
This study aims to contribute to a more detailed knowledge of the biogeography of coccolithophores in the Equatorial and Southeastern Pacific Ocean. Census data of fossil coccoliths are presented in a suite of core-top sediment samples from 15°N to 50.6°S and from 71°W to 93°W. Following standard preparation of smear slides, a total of 19 taxa are recognized in light microscopy and their relative abundances are determined for 134 surface sediment samples. Considering the multivariate character of oceanic conditions and their effects on phytoplankton, a Factor Analysis was performed and three factors were retained. Factor 1, dominated by Florisphaera profunda and Gephyrocapsa oceanica, includes samples located under warm water masses and indicates the occurrence of calcite dissolution in the water column in the area offshore Chile. Factor 2 is related to cold, low-salinity surface-water masses from the Chilean upwelling, and is dominated by Emiliania huxleyi, Gephyrocapsa sp. < 3 μm, Coccolithus pelagicus and Gephyrocapsa muellerae. Factor 3 is linked to more saline, coastal upwelling areas where Calcidiscus leptoporus and Helicosphaera carteri are the dominant species.  相似文献   

6.
The response of Emiliania huxleyi (Lohmann) W. W. Hay et H. Mohler, Calcidiscus leptoporus (G. Murray et V. H. Blackman) J. Schiller, and Syracosphaera pulchra Lohmann to elevated partial pressure of carbon dioxide (pCO2) was investigated in batch cultures. We reported on the response of both haploid and diploid life stages of these three species. Growth rate, cell size, particulate inorganic carbon (PIC), and particulate organic carbon (POC) of both life stages were measured at two different pCO2 (400 and 760 parts per million [ppm]), and their organic and inorganic carbon production were calculated. The two life stages within the same species generally exhibited a similar response to elevated pCO2, the response of the haploid stage being often more pronounced than that of the diploid stage. The growth rate was consistently higher at elevated pCO2, but the response of other processes varied among species. Calcification rate of C. leptoporus and of S. pulchra did not change at elevated pCO2, whereas it increased in E. huxleyi. POC production and cell size of both life stages of S. pulchra and of the haploid stage of E. huxleyi markedly decreased at elevated pCO2. It remained unaltered in the diploid stage of E. huxleyi and C. leptoporus and increased in the haploid stage of the latter. The PIC:POC ratio increased in E. huxleyi and was constant in C. leptoporus and S. pulchra. Elevated pCO2 has a significant effect on these three coccolithophore species, the haploid stage being more sensitive. This effect must be taken into account when predicting the fate of coccolithophores in the future ocean.  相似文献   

7.
Several cores recovered from the northern belt of the Southern Ocean were analysed to study the Pleistocene calcareous nannofossil records. Calcareous nannofossil events previously described in medium and low latitudes were identified and calibrated with the oxygen isotope and geomagnetic time scales. Although sedimentation rates, hiatuses and degree of calcareous nannofossil preservation sometimes prevent the identification and/or accurate calibration of some of these events, a useful stratigraphic framework was obtained. The possibility of using these calibrated events from high to low latitudes facilitates correlations and should facilitate isotope event identification in a region with low temperature, where calcareous plankton stratigraphies are in general restricted. In general, Pleistocene southern high latitude calcareous nannofossil events show synchronism with those observed in warm and temperate surficial waters. Small discrepancies in the assigned ages are sometimes related to low sampling resolution due to low sedimentation rates. The first occurrence (FO) of Emiliania huxleyi and the last occurrence (LO) of Pseudoemiliania lacunosa are observed in Marine Isotope Stages (MIS) 8 and 12, respectively. A reversal in abundance between Gephyrocapsa muellerae and E. huxleyi is observed close to the MIS 4/5 boundary. MIS 6 is characterised by an increase in G. muellerae and MIS 7 features a dramatic decrease in the proportion of Gephyrocapsa caribbeanica. This latter species began to increase its proportions from the MIS 13/14 boundary to MIS13, showing diachronism between the different sites. The LO of Reticulofenestra asanoi is observed at MIS 22, confirming this event as a global synchronous reference datum. By contrast, the FO of R. asanoi occurs at MIS 35 and is diachronous with the existing data from other oceanic regions. A re-entry of medium sized Gephyrocapsa (3–5 μm maximum diameters) can be identified in some cores close to MIS 25; although the low abundance of this taxon prevents an accurate calibration, it may be concluded that this event is diachronous as compared with the existing low-latitude data. The LO of large morphotypes of Gephyrocapsa is well correlated with MIS 37, showing synchronism with other oceanic regions, whereas the FO of this species is not well calibrated due to the absence of age-control points.  相似文献   

8.
Calcareous nannofossil assemblages have been investigated at Ocean Drilling Program (ODP) Site 1090 located in the modern Subantarctic Zone, through the Pleistocene Marine Isotope Stages (MIS) 34–29, between 1150 and 1000 ka. A previously developed age model and new biostratigraphic constraints provide a reliable chronological framework for the studied section and allow correlation with other records. Two relevant biostratigraphic events have been identified: the First Common Occurrence of Reticulofenestra asanoi, distinctly correlated to MIS 31–32; the re-entry of medium Gephyrocapsa at MIS 29, unexpectedly similar to what was observed at low latitude sites.The composition of the calcareous nannofossil assemblage permits identification of three intervals (I–III). Intervals I and III, correlated to MIS 34–32 and MIS 30–29 respectively, are identified as characteristic of water masses located south of the Subtropical Front and reflecting the southern border of Subantarctic Zone, at the transition with the Polar Front Zone. This evidence is consistent with the hypothesis of a northward shift of the frontal system in the early Pleistocene with respect to the present position and therefore a northernmost location of the Subantarctic Front. During interval II, which is correlated to MIS 31, calcareous nannofossil assemblages display the most significant change, characterized by a distinct increase of Syracosphaera spp. and Helicosphaera carteri, lasting about 20 ky. An integrated analysis of calcareous nannofossil abundances and few mineralogical proxies suggests that during interval II, Site 1090 experienced the influence of subtropical waters, possibly related to a southward migration of the Subtropical Front, coupled with an expansion of the warmer Agulhas Current at the core location. This pronounced warming event is associated to a minimum in the austral summer insolation. The present results provide a broader framework on the Mid-Pleistocene dynamic of the ocean frontal system in the Atlantic sector of the Southern Ocean, as well as additional evidence on the variability of the Indian–Atlantic ocean exchange.  相似文献   

9.
Electrona antarctica is one of the most abundant mesopelagic fishes in the oceanic zone surrounding the Kerguelen Archipelago in the Indian sector of the Southern Ocean. Generalized additive models (GAM) combined with geographical information systems (GIS) were used to predict and map the abundance of this species according to three environmental variables: sea surface temperature, bathymetry and surface chlorophyll a. The model was applied on the Antarctic Polar Front in the eastern part of Kerguelen Archipelago. E. antarctica seems to be linked to areas presenting low chlorophyll a concentrations, depths greater than 500 m and temperatures lower than 5°C. The model was then applied to the Kerguelen’s plateau for three different years: 1998, 1999 and 2000. The position of Antarctic Polar Front and the intensity of an upwelling play an important role in the abundance variability of E. antarctica. Furthermore, the model allows the understanding of the habitat of E. antarctica and its trophic place in the pelagic ecosystem.  相似文献   

10.
Horizontal distributions of coccolithophores were observed in sea surface water samples collected on the RV Polarstern between 27 February and 10 April, 2001, in the Pacific sector of the Southern Ocean (Bellingshausen and Amundsen Seas). These samples were analyzed to gain information about the distribution of coccolithophores in relation to the oceanic fronts of the Southern Ocean. A total of fifteen species of coccolithophores were identified, showing cell abundances of up to 67 × 103 cells/l down to 63°S. Emiliania huxleyi was the most abundant taxon, always accounting for more than 85% of the assemblage. The second most abundant species was Calcidiscus leptoporus, with values lower than 7%. Cell density increases significantly in both the Subantarctic and Polar Fronts (155 and 151 × 103 cells/l, respectively), decreasing abruptly in the intervening Polar Frontal Zone and to the south of the Polar Front. Although temperature at high latitudes is the main factor controlling the biogeographical distribution of coccolithophores, at the regional level (Southern Ocean) the frontal systems, and consequently nutrient distribution, play a crucial role.  相似文献   

11.
The coccolithophore assemblages in two ODP Sites (1237 and 1238) are studied in order to reconstruct the paleoenvironmental conditions in the tropical and equatorial Pacific during the last 800 kyr. Both ODP Sites are located in the two most significant upwelling zones of the tropical and equatorial Pacific: Peru and Equatorial upwelling, respectively. The two sites are considered to have had similar evolutions. The coccolith relative abundance, the nannofossil accumulation rate (NAR) and the N ratio (namely, the proportion of < 3 μm placoliths in relation to Florisphaera profunda) allow us to identify three different intervals. Interval I (0.86-0.45 Ma) and interval III (0.22-0 Ma) are related to weak upwelling and weak Trade Winds, as suggested by coccolithophore assemblages with low N ratios. Interval II (0.45-0.22 Ma), characterized by dominant Gephyrocapsa caribbeanica and very abundant “small” Gephyrocapsa and Gephyrocapsa oceanica, is conversely related to intense upwelling and enhanced Trade Winds.  相似文献   

12.
The present study was initiated to ascertain the significance of coccolithophores as a proxy for paleoceanographic and paleoproductivity studies in the equatorial Atlantic. Data from a range of different samples, from the plankton, surface sediments as well as sediment cores are shown and compared with each other.In general, the living coccolithophores in the surface and subsurface waters show considerable variation in cell numbers and distribution patterns. Cell densities reached a maximum of up to 300×103 coccospheres/l in the upwelling area of the equatorial Atlantic. Here, Emiliania huxleyi is the dominant species with relatively high cell numbers, whereas Umbellosphaera irregularis and Umbellosphaera tenuis are characteristic for oligotrophic surface waters. Although they are observed in high relative abundances, these species only occur in low absolute numbers. The lower photic zone is dominated by high abundances and considerable cell numbers of Florisphaera profunda.The geographical distribution pattern of coccoliths in surface sediments reflects the conditions of the overlying surface water masses. However, abundances of the oligotrophic species Umbellosphaera irregularis and Umbellosphaera tenuis are strongly diminished, causing an increase in relative abundance of the lower photic zone taxa Florisphaera profunda and Gladiolithus flabellatus.During the past 140,000 years the surface water circulation of the equatorial Atlantic has changed drastically, as can be seen from changes in the coccolithophore species composition, absolute coccolith numbers, as well as coccolith accumulation rates. Significant increases in coccolith numbers and accumulation rates is observed in the southern equatorial Atlantic during the last glacial interval (oxygen isotope stages 2–4), which we attribute to enhanced upwelling intensities and advection of cool nutrient rich waters at this site. In the western equatorial Atlantic we observe an opposite trend with decreasing numbers of coccoliths during glacial periods, which probably is caused by a deepening of the thermocline.  相似文献   

13.
The traditional interpretation of Coccolithus pelagicus as a cold water proxy is examined based on its distribution patterns in the water column off the Portuguese coast (using data from eleven cruises) and in Holocene surface sediment samples and Quaternary cores from the same region.Coccolithus pelagicus is common in the Portuguese upwelling system, an area where surface waters are predominantly of subtropical origin. Although revealing an affinity for low temperature upwelled waters, the species was found in waters up to 18°C associated with riverine plume and shelf-break fronts. C. pelagicus seemed to consistently occupy a particular ecological niche, between other phytoplankton groups, related to moderate turbulence conditions combined with nutrient availability. From this behaviour, it is proposed that C. pelagicus can be used as a tracer of the periphery of areas of enhanced productivity.Coccolithus pelagicus preferences for fronts of moderate temperature and salinity gradients are tentatively used to explain particular features of its sedimentary record. The repeated increase of C. pelagicus in thanatocoenoses (surface sediment assemblages) close to three river mouths, on the Portuguese shelf, are interpreted as a positive response to the development of riverine plumes. On the other hand, inconsistencies in the correlation between sea surface cooler-glacial and warmer-interglacial isotope stages and the relative abundance pattern of C. pelagicus during the Late Quaternary, as registered in two Galicia Bank piston cores (42°N), are tentatively explained in terms of shifts in the extent of the outer limit of the local palaeoproductivity belt off the Iberian Peninsula.  相似文献   

14.
The gephyrocapsids, main component of the Pleistocene calcareous nannofossil assemblages, are here discussed as biostratigraphical and paleoclimate tools. The occurrence of the genus Gephyrocapsa is quantitatively analysed in the core ODP 198-1209B, collected in the NW Pacific Ocean. The studied stratigraphic succession covers a time interval including the Middle Pleistocene Transition (MPT), a highly investigated period characterized by important global climate changes. During the Pleistocene, Gephyrocapsa is extremely abundant and provides several bioevents used in biostratigraphy. In addition to the known standard events, we observe the occurrence of particular Gephyrocapsa morphogroups and significant changes in the relative abundance of G. caribbeanica. In the Early-Middle Pleistocene we identify four intervals based on the Gephyrocapsa content. Moreover, during the MPT, the stratigraphic distribution of Gephyrocapsa underlines a dominance of both the small morphogroup and the medium-sized G. caribbeanica that could be dependent on their paleoecology. Small Gephyrocapsa and G. caribbeanica seem to be more competitive than other coccolithophores during the global oceanographic variations and the re-organisation of the glacial-interglacial periodicity during the MPT.  相似文献   

15.
A detailed quantitative calcareous nannofossil analysis has been performed on 138 samples from the astronomically dated Monte del Casino section with the aim to identify and precisely date the most important calcareous nannofossil events across the Tortonian/Messinian boundary in the Mediterranean, and to unravel paleoceanographic conditions at times of sapropel formation during the Late Miocene. From the biostratigraphic perspective, the genus Amaurolithus provides three successive first occurrences (FOs): A. primus, A. cf. amplificus and A. delicatus, dated at 7.446, 7.434 and 7.226 Ma, respectively. Other bioevents include the base and top of the `small reticulofenestrids' Acme, dated at 7.644 and 6.697 Ma, and the FO, FCO and LO of R. rotaria, dated at 7.405, 7.226 and 6.771 Ma. These events appear to be useful in improving biostratigraphic resolution in the Tortonian–Messinian boundary interval, at least for the Mediterranean. Quantitative analysis revealed changes in the calcareous nannofossil assemblage associated with the sapropels. The observed fluctuations suggest a single mechanism for sapropel formation in the Mediterranean during the late Neogene. Sapropels are characterized by a decrease in the total number of coccoliths, interpreted mainly as a reduction in calcareous nannofossil production due to increased siliceous plankton production during spring blooms; and an increase in reworked specimens, interpreted to reflect enhanced continental input via river run-off. An increase in abundance of the genus Rhabdosphaera can be explained by opportunistic behavior at the end of the spring bloom when nutrient levels start to become impoverished. As far as sea surface water temperature indicators are concerned, warm water D. pentaradiatus shows positive fluctuations in sapropels while cooler water D. intercalaris and C. pelagicus show negative fluctuations.  相似文献   

16.
The paleoceanographic potential of coccolithophores was used to decipher the paleoproductivity changes in the eastern Indian Ocean during the past 300,000 years. Core SO139-74KL was taken at the seaward limit of a fore-arc basin of the Indonesian continental shelf located beneath the Java upwelling system. Coccolithophores occur in all samples, and total coccolith concentration exhibit distinct variations over the entire section. Peak abundances occur every 20,000 to 25,000 years with the highest peak at isotope stage 7. Abundances increase during the glacials but peak abundances also occur during interglacials. The preservation of coccoliths is good to moderate in most of the samples. The most abundant species is Florisphaera profunda with a mean relative abundance of 41.5% followed by Gephyrocapsa ericsonii and Emiliania huxleyi (EhuxGeric) and Gephyrocapsa oceanica. These four taxa dominate the assemblage throughout the core, forming on average 90.5% of the total assemblage. The species composition suggests that warm tropical conditions prevailed throughout the investigated time period indicating that temperature was not the driving force for the assemblage variations at this site. The geologic record for present-day and Holocene oceanographic conditions seemed to be predominantly characterised by high productivities in combination with an unstable water column. Indications for oligotrophic open ocean conditions were sparse. However, during most of the year oligotrophic conditions prevail and upwelling recurs only for a short time period but upwelling indicating proxies dominate the geological record. A contrasting fully oligotrophic scenario characterised by peaks in the abundances of total coccolithophores, Umbellosphaera irregularis, and in the percentage ratio of EhuxGeric to G. oceanica can be seen with a periodical recurrence every 20,000 to 25,000 years. Synchronously the records of the high productivity indicators total organic carbon and G. oceanica are characterised by distinct minima. We believe that upwelling was totally cut off during these times and oligotrophic conditions with a pronounced water column stratification prevailed throughout all seasons. An obvious correspondence between the shut down times of upwelling and insolation minima suggests that surface water conditions were driven by orbital forcing.  相似文献   

17.
Living calcareous nannoplankton in the region between Australia and Antarctica are distributed in five assemblages associated with distinct physico-chemical properties of surface and subsurface water masses. Temperature and salinity ranges for living assemblages were 2–15.7°C and 33.7–35.56‰, respectively, with maximum cell densities for austral summer 1994 found at 9.63°C and 34.44‰, and for austral summer 1995 at 12.8°C and 35.17‰. Nutrients (phosphate, silicate and nitrate) increase poleward and vertically from surface to depth. Abundance and diversity of calcareous nannoplankton decrease in a poleward direction with major shifts located across both the Subtropical and the Subantarctic Fronts. Higher cell densities were found below 50 m equatorward of the Subtropical Front and above 50 m poleward of this front. Poleward of the Antarctic Divergence coccolithophores are absent from all samples. Three different morphotypes of Emiliania huxleyi were identified, one of which has a distribution associated with the Subtropical Front. Of the subordinate species Syracosphaera spp, Calciosolenia murrayi and Umbellosphaera tenuis dominate equatorward of the Subtropical Front with Syracosphaera spp and Calcidiscus leptoporus dominant poleward of this front. A peculiar community of weakly calcified species is recorded for the first time outside the Weddell Sea.  相似文献   

18.
《Marine Micropaleontology》2006,58(3):184-206
The ecological preferences of morphological groups within major coccolithophore taxa were studied in surface water samples from the equatorial and subequatorial Pacific Ocean. Emiliania huxleyi was subdivided into three morphological groups: Type A, Type C, and variety corona. The most probable factors limiting the occurrence of E. huxleyi Types A and C were high temperatures and low nutrient concentrations, respectively. E. huxleyi var. corona had an affinity for oligotrophic conditions. Calcidiscus leptoporus ssp. small was adapted to fertile waters. Umbilicosphaera foliosa and Umbilicosphaera sibogae preferred mesotrophic upwelling waters and stratified marginal waters surrounding the upwelling front, respectively. Among the three Umbellosphaera tenuis morphotypes observed in this study (Types I, III, and IV), only Type I was found in very warm tropical surface. Both Types III and IV were found in subtropical waters, and Type III differed from Type IV in that its distribution was constrained to hemi-pelagic waters. Habitat segregation among the morphotypes of major taxa indicates that the observed global distributions of these major taxa are, in fact, combinations of discrete morphological groups.  相似文献   

19.
The spatial distribution of living coccolithophores was studied in the Western-Central Equatorial Pacific Ocean during November–December, 1990 and September–October, 1992. The highest local concentration of coccolithophores occurred at the thermocline in well-stratified waters, but at sea-surface level in dynamic waters. In total, 111 coccolithophore taxa were recognized, some of which exhibited hydrographically controlled variation in their absolute abundance. Gephyrocapsa oceanica and Oolithotus antillarum were abundant in the upwelling front. Most of the lower photic dwellers were abundant in the tropical to subtropical stations regardless of the water stratification. The coccolithophore flora of well-stratified waters could be distinguished from the upwelling front flora by the higher abundance of Umbellosphaera irregularis and lower abundance of G. oceanica. The temperature mixed-water flora was characterized by a high abundance of Emiliania huxleyi. The vertical distribution of all coccolithophore taxa, except three placolith-bearing species, Gephyrocapsa ericsonii, G. oceanica and E. huxleyi, was controlled by upper photic-zone temperature and water stratification. The upper or lower vertical distribution limits of many coccolithophore taxa coincided with the top of the thermocline. The most common 27 taxa were grouped into four ecological groups, Upper Photic-zone Group (UPG), Middle Photic-zone Group (MPG), Lower Photic-zone Group (LPG) and Omnipresent Group (OPG), on the basis of their vertical distribution. By analyzing the hydrographic control on the vertical distribution of these four ecological groups, four ecological assemblages were recognized: High Temperature; Warm Oligotrophic; Warm Eutrophic; and Temperate Mixed-water Assemblages. In equatorial waters, the total coccolithophore assemblage across the photic-zone was controlled by the population in the upper photic-zone. The UPG monopolized the upper photic-zone flora in the High Temperature Assemblage. In the Warn Oligotrophic-water Assemblage, common OPG accompanied abundant UPG in the upper photic-zone. The upper photic-zone of the Warm Eutrophic Assemblage consisted of UPG, MPG and OPG.Emiliania huxleyi and Gephyrocapsa oceanica, the major component of OPG, displayed intra-specific morphological variations. G. oceanica Type 1 was restricted to the upper photic-zone of well-stratified oligotrophic waters. Conversely, in these waters E. huxleyi Type C and G. oceanica Type 2 only occurred below the thermocline. These two taxa also coexist with G. oceanica Type 3 and E. huxleyi Type A in the upper photic zone of dynamic waters.  相似文献   

20.
The fossil record of the Pleistocene calcareous nannoplankton indicates that during the mid-Pleistocene (0.93–1.25 my) occurred an episode of overwhelming dominance of smallGephyrocapsa. During this episode normally abundant, large size specimens of this genus (mainlyGephyrocapsa oceanica) were virtually excluded from the phytoplankton of tropical and subtropical oceans. The best modern analog of this dominantly smallGephyrocapsa assemblage is the subpolarEmiliania huxleyi assemblage, which implies that nutrient content was significantly greater and water temperature was lower in the photic water column of the tropical oceans than they are today. Increased equatorial upwelling in the oceans, on a scale much greater than today, may explain the above pattern.To achieve such broad equatorial upwelling there must be a source and a drive for cold, dense water. The Arctic Ocean, which was probably seasonally free of ice during this interval of the mid-Pleistocene, is capable of providing the requisite source as well as a drive for the inferred equatorial upwelling. The energy balance of a predominantly ice-free Arctic Ocean requires an approximately three to seven fold increase of hydrospheric heat transport from the North Atlantic to the Arctic Ocean, which dictates a corresponding or even greater increase in the volume of warm water entering the Arctic Ocean at the surface and cold dense water exiting at depth to the North Atlantic. Such enhanced dense water formation in the Arctic Ocean could drive the intensified equatorial upwelling implied by the smallGephyrocapsa dominance interval.If the above scenario is correct then the climate of the earth's northern hemisphere during the mid-Pleistocene may have been very different from the younger Pleistocene climate. One manifestation of this difference may be the mid-Pleistocene shift in climatic cycle periodicity from 40 ky to 100 ky. Another important aspect is that the enhanced greenhouse effect expected during the next century because of an increase of atmospheric CO2 is thought to lead directly to melting of the Arctic Ocean ice cover and of the Greenland ice sheet. Thus, the “greenhouse” Arctic Ocean and its attendant ocean circulation would resemble the inferred mid-Pleistocene conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号