首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nitrogenase activity in the obligate methaneoxidizing bacterium Methylococcus capsulatus (Bath) was added ammonia. This observation was extended to include other ammonia. This observation was extended to include other representative N2-fixing species of methanotrophs. The ammonia switch-off of nitrogenase in M. capsulatus (Bath) was reversed on washing cells to remove excess ammonia, in the presence of chloramphenicol, suggesting that a form of covalent modification of nitrogenase may occur. Replacing the oxidizable substrate methanol with formaldehyde, formate, ethanol or hydrogen had no effect on nitrogenase switch-off. A number of potential nitrogen sources or intermediates of nitrogen metabolism such as glutamine, asparagine, glutamate and alanine when tested, did not effect switch-off. However, the rapid inhibition of nitrogenase activity of M. capsulatus (Bath) could be achieved by adding the uncoupler carbonylcyanide m-chlorophenylhydrazone or nitrite. The glutamine synthetase inhibitor methionine sulphoximine blocked the switch-off effect of ammonia, indicating that the metabolism of ammonia may be essential for switch-off to occur. Inhibitors of glutamate synthase did not alleviate the ammonia switch-off response. Methionine sulphoximine did not alleviate the rapid inhibition of nitrogenase by carbonylcyanide m-chlorophenylhydrazone indicating that the shortterm regulation of nitrogenase by uncouplers and ammonia proceed via different mechanisms.Abbreviations MSX methionine-DL-sulphoximine - DON 6-diazo-5-oxo-L-norleucine - GS glutamine synthetase - GOGAT glutamine 2-oxoglutarate aminotransferase (glutamate synthase) - CCCP carbonylcyanide m-chlorophenyl hydrazone  相似文献   

3.
4.
5.
6.
The relationship between the rates of methane and ethane oxidation by washed suspensions of methane-oxidizing bacteria has been investigated. Considerable differences between bacterial strains were observed. Two closely related Methylomonas strains which differed in their oxidizing capacity were further investigated. The low ethane oxidation rate of one strain could be strongly stimulated by the addition of oxidizable co-substrates, and the presence of ethane stimulated formate oxidation. The other strain had a much higher ethane oxidation rate and stimulation by co-substrates was negligible.Differences between the levels of dissimilative enzymes in cell-free extracts could not be detected. Attempts to produce extracts with methane mono-oxygenase activity failed. When cells were made permeable with chitosan the results suggested that strains with a low ethane oxidizing capacity obtain the required reductant for the mono-oxygenase from endogenous respiration. In strains with a high ethane oxidation rate, the reductant appears to be derived from oxidation of ethanol or acetaldehyde.  相似文献   

7.
8.
The abundance and activity of methane-oxidizing bacteria (MOB) in the water column were investigated in three lakes with different contents of nutrients and humic substances. The abundance of MOB was determined by analysis of group-specific phospholipid fatty acids from type I and type II MOB, and in situ activity was measured with a 14CH4 transformation method. The fatty acid analyses indicated that type I MOB most similar to species of Methylomonas, Methylomicrobium, and Methylosarcina made a substantial contribution (up to 41%) to the total bacterial biomass, whereas fatty acids from type II MOB generally had very low concentrations. The MOB biomass and oxidation activity were positively correlated and were highest in the hypo- and metalimnion during summer stratification, whereas under ice during winter, maxima occurred close to the sediments. The methanotroph biomass-specific oxidation rate (V) ranged from 0.001 to 2.77 mg CH4-C mg(-1) C day(-1) and was positively correlated with methane concentration, suggesting that methane supply largely determined the activity and biomass distribution of MOB. Our results demonstrate that type I MOB often are a large component of pelagic bacterial communities in temperate lakes. They represent a potentially important pathway for reentry of carbon and energy into pelagic food webs that would otherwise be lost as evasion of CH4.  相似文献   

9.
51 methane-oxidizing bacteria strains such as Methylomonas methanica, M. rubra, Methylococcus capsulatus, M. thermophilus, M. luteus, M. ucrainicus, M. whittenburyi, Methylosinus trichosporium, M. sporium, Methylocystis parvus isolated from various ecological niches and geographical regions of the Ukraine and also the strains received from R. Whittenbury and Y. Heyer were screened for restriction endonucleases. Type II restriction endonucleases were detected in IMV B-3112 (= 12 b), IMV B-3027 (= 26), IMV B-3019 (= 9 c), IMV B-3017 (= 17 c), IMV B-3226 (= 26 v), IMV B-3033 (= Y), IMV B-3100 (= 100) and IMV B-3494 (= 1E494). The results obtained were indicative of relatively high frequency of restriction enzymes occurrence in methane-oxidizing bacteria. There were Kpn I (Asp 7181) restriction endonuclease isoschizomers in crude extracts of IMV B-3112, B-3017, B-3019, B-3027 isolated from fresh-water silt as well as in IMV B-3226 strain isolated from waste-water silt. Although these isolates had bee previously considered as untypical strains of M. ucrainicus, more detailed study of their properties allowed placing them with Methylovarius luteus (= Methylococcus luteus). IMV B-3494 strain was identified as Methylococcus capsulatus. Strain IMV B-3033 had earlier been allocated to Methylovarius whittenburyi (= Methylococcus whittenburyi). Specificity of restriction endonucleases of this strain was not tested. Therefore, for the first time restriction endonucleases were detected in methane-oxidizing bacteria. 8 strains (3 species) among 51 strains (13 species) were found to produce restriction endonucleases displaying three different types of specificity in the least. Producers of restriction endonucleases having Kpn I (Asp 7181) specificity were isolated from different water and silt samples of the Dnieper flood-land more than 20 years ago.  相似文献   

10.
11.
Microbial transformations of selenite by methane-oxidizing bacteria   总被引:1,自引:0,他引:1  

Methane-oxidizing bacteria are well known for their role in the global methane cycle and their potential for microbial transformation of wide range of hydrocarbon and chlorinated hydrocarbon pollution. Recently, it has also emerged that methane-oxidizing bacteria interact with inorganic pollutants in the environment. Here, we report what we believe to be the first study of the interaction of pure strains of methane-oxidizing bacteria with selenite. Results indicate that the commonly used laboratory model strains of methane-oxidizing bacteria, Methylococcus capsulatus (Bath) and Methylosinus trichosporium OB3b, are both able to reduce the toxic selenite (SeO3 2?) but not selenate (SeO4 2?) to red spherical nanoparticulate elemental selenium (Se0), which was characterized via energy-dispersive X-ray spectroscopy (EDXS), X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). The cultures also produced volatile selenium-containing species, which suggests that both strains may have an additional activity that can transform either Se0 or selenite into volatile methylated forms of selenium. Transmission electron microscopy (TEM) measurements and experiments with the cell fractions cytoplasm, cell wall and cell membrane show that the nanoparticles are formed mainly on the cell wall. Collectively, these results are promising for the use of methane-oxidizing bacteria for bioremediation or suggest possible uses in the production of selenium nanoparticles for biotechnology.

  相似文献   

12.
Extraction of methane-oxidizing bacteria from soil particles   总被引:7,自引:0,他引:7  
Abstract: We present a method for extraction of active methane (CH4)-oxidizing bacteria from soil samples. The method is based on physical dispersion of bacteria from the soil particles followed by separation of bacteria and soil particles by floatation in the density media Nycodenz or Percoll. Separation on Nycodenz produced very pure bacterial suspensions while separation on Percoll produced rather impure suspensions. However, more than 60% of the methane-oxidizing activity was irreversibly inhibited in the procedure using Nycodenz compared to less than 10% irreversible inhibition when Percoll was employed. The bacterial suspensions extracted from soil can be used to study the physiology and ecology of soil bacteria that oxidize methane at atmospheric concentrations. Our data indicated that these bacteria are extremely difficult to dislodge from particles compared to the majority of bacteria in soil. Tentatively, we interpret the strong attachment to long residence time (i.e. slow turnover) of the methane-oxidizing bacteria. A slow turnover/growth rate would explain why soil disturbances, like cultivation, have a long lasting effect on the oxidation of atmospheric methane in soil.  相似文献   

13.
Agricultural soils are heterogeneous environments in which conditions affecting microbial growth and diversity fluctuate widely in space and time. In this study, the molecular ecology of the total bacterial and free-living nitrogen-fixing communities in soils from the Nafferton Factorial Systems Comparison (NFSC) study in northeast England were examined. The field experiment was factorial in design, with organic versus conventional crop rotation, crop protection, and fertility management factors. Soils were sampled on three dates (March, June, and September) in 2007. Total RNA was extracted from all soil samples and reverse transcribed. Denaturing gradient gel electrophoresis (DGGE) and quantitative PCR (qPCR) were used to analyze nifH and 16S rRNA genes in order to study free-living diazotrophs and the total bacterial community, respectively. Crop rotation was shown to have a significant effect on total bacterial diversity (and that of free-living N fixers) (P ≤ 0.001). On all three dates, nifH activity was higher in the conventional crop rotation. In contrast, qPCR analysis of free-living N fixers indicated significantly higher levels of activity in conventionally fertilized plots in June (P = 0.0324) and in plots with organic crop protection in September (P = 0.0143). To our knowledge, the effects of organic and conventional farming systems on free-living diazotrophs have never been studied. An increased understanding of the impacts of management practices on free-living N fixers could allow modifications in soil management practices to optimize the activity of these organisms.  相似文献   

14.
15.
The activity and community structure of methanotrophs in compartmented microcosms were investigated over the growth period of rice plants. In situ methane oxidation was important only during the vegetative growth phase of the plants and later became negligible. The in situ activity was not directly correlated with methanotrophic cell counts, which increased even after the decrease in in situ activity, possibly due to the presence of both vegetative cells and resting stages. By dividing the microcosms into two soil and two root compartments it was possible to locate methanotrophic growth and activity, which was greatest in the rhizoplane of the rice plants. Molecular analysis by denaturing gradient gel electrophoresis and fluorescent in situ hybridization (FISH) with family-specific probes revealed the presence of both families of methanotrophs in soil and root compartments over the whole season. Changes in community structure were detected only for members of the Methylococcaceae and could be associated only with changes in the genus Methylobacter and not with changes in the dominance of different genera in the family Methylococcaceae. For the family Methylocystaceae stable communities in all compartments for the whole season were observed. FISH analysis revealed evidence of in situ dominance of the Methylocystaceae in all compartments. The numbers of Methylococcaceae cells were relatively high only in the rhizoplane, demonstrating the importance of rice roots for growth and maintenance of methanotrophic diversity in the soil.  相似文献   

16.
Adsorption of pure cultures of methane oxidizing bacteria, Methylosinus trichosporium 20 and Methylococcus ucrainicus 21, on glass and coal was studied; the former strain was sorbed on both sorbents, the latter strain was sorbed on coal but not on glass. The rate of methane oxidation by the cells of adsorbed microorganisms was higher than in the case of free cells, and increased with a decrease in dimensions of the sorbent particles.  相似文献   

17.
The activity of hydrogenase was assayed in the intact cells and subcellular fractions of Brevibacterium flavum. The organism was shown to have the membrane-bound form of hydrogenase. The soluble NAD+-reducing hydrogenase was not found. Oxygen inhibited the hydrogenase activity, and its action was reversible. Molecular hydrogen activated the hydrogenase of B. flavum, which was shown to be a constitutive enzyme.  相似文献   

18.
19.
20.
【目的】甲烷氧化混合菌是自然界中吸收甲烷的关键微生物,在甲烷氧化混合菌的研究和应用中,首先要解决其长期稳定保藏的问题,保藏方法应能有效保持菌群结构和功能的完整性、稳定性。【方法】以从煤矿土壤富集得到的两种结构稳定的甲烷氧化混合菌为实验体系,研究对比了冷藏法、低温冷冻法、石蜡油冷冻法、甘油冷冻法4种保藏方法,考察保藏前后混合菌的生长状况、MMO活性、菌群结构等。【结果】保藏6个月后,除甘油冷冻法以外,经其它3种方法保藏的混合菌,都具有与保藏前相当的细胞密度、甲烷氧化能力、MMO酶活以及传代稳定性,且DGGE图谱显示保藏前后的菌群结构变化不大。【结论】这3种保藏方法都可以有效的保持甲烷氧化混合菌功能和菌群结构的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号