首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously isolated Aurora-C/Aie1 in a screen for kinases expressed in mouse sperm and eggs. Here, we show the localization of endogenous Aurora-C and examine its roles during female mouse meiosis. Aurora-C was detected at the centromeres and along the chromosome arms in prometaphase I–metaphase I and was concentrated at centromeres at metaphase II, in which Aurora-C also was phosphorylated at Thr171. During the anaphase I–telophase I transition, Aurora-C was dephosphorylated and relocalized to the midzone and midbody. Microinjection of the kinase-deficient Aurora-C (AurC-KD) mRNA into mouse oocytes significantly inhibited Aurora-C activity and caused multiple defects, including chromosome misalignment, abnormal kinetochore–microtubule attachment, premature chromosome segregation, and cytokinesis failure in meiosis I. Furthermore, AurC-KD reduced Aurora-C and histone H3 phosphorylation and inhibited kinetochore localization of Bub1 and BubR1. Similar effects also were observed in the oocytes injected with INCNEP-delIN mRNAs, in which the Aurora-C binding motif was removed. The most dramatic effect observed in AurC-KD–injected oocytes is cytokinesis failure in meiosis I, resulting in producing large polyploid oocytes, a pattern similar to Aurora-C deficiency human spermatozoa. Surprisingly, we detected no Aurora-B protein in mouse oocytes. We propose that Aurora-C, but not Aurora-B, plays essential roles in female mouse meiosis.  相似文献   

2.
3.
Aurora kinases are emerging as key regulators of centrosome function, chromosome segregation and cytokinesis. We previously isolated Aurora-C (Aie1), a third type of Aurora kinase, in a screen for kinases expressed in mouse sperm and eggs. Currently, we know very little about the precise localization and function of Aurora-C. Immunofluorescence analysis of ectopically expressed GFP-Aurora-C has revealed that Aurora-C is a new member of the chromosomal passenger proteins localizing first to the centromeres and then to the central spindles during cytokinesis. In order to study the potential role of Aurora-C, we examined the effects of a kinase-deficient (KD) mutant (AurC-KD) in HeLa Tet-Off cells under tetracycline control. Our results showed that overexpression of AurC-KD causes defects in cell division and induces polyploidy and apoptosis. Interestingly, AurC-KD overexpression also inhibits centromere/kinetochore localization of Aurora-B, Bub1, and BubR1, reduces histone H3 phosphorylation, and disrupts the association of INCENP with Aurora-B. Together, our results showed that Aurora-C is a chromosomal passenger protein, which may serve as a key regulator in cell division.  相似文献   

4.
The assembly of the mitotic centromere has been extensively studied in recent years, revealing the sequence and regulation of protein loading to this chromosome domain. However, few studies have analyzed centromere assembly during mammalian meiosis. This study specifically targets this approach on mouse spermatocytes. We have found that during prophase I, the proteins of the chromosomal passenger complex Borealin, INCENP, and Aurora-B load sequentially to the inner centromere before Shugoshin 2 and MCAK. The last proteins to be assembled are the outer kinetochore proteins BubR1 and CENP-E. All these proteins are not detected at the centromere during anaphase/telophase I and are then reloaded during interkinesis. The loading sequence of the analyzed proteins is similar during prophase I and interkinesis. These findings demonstrate that the interkinesis stage, regularly overlooked, is essential for centromere and kinetochore maturation and reorganization previous to the second meiotic division. We also demonstrate that Shugoshin 2 is necessary for the loading of MCAK at the inner centromere, but is dispensable for the loading of the outer kinetochore proteins BubR1 and CENP-E.  相似文献   

5.
The chromosomal passenger complex (CPC) plays a pivotal role in controlling accurate chromosome segregation and cytokinesis during cell division. Aurora-B, one of the chromosomal passenger proteins, is important for the mitotic spindle assembly checkpoint (SAC). Previous reports noted that Aurora-C is predominantly expressed in male germ cells and has the same subcellular localization as Aurora-B. Increasing evidence indicates that Aurora-C is overexpressed in many somatic cancers, although its function is uncertain. Our previous study showed that the aberrant expression of Aurora-C increases the tumorigenicity of cancer cells. Here, we demonstrate that overexpressed Aurora-C displaces the centromeric localization of CPCs, including INCENP, survivin, and Aurora-B. When cells were treated with nocodazole to turn on SAC, both the Aurora-B protein stability and kinase activity were affected by overexpressed Aurora-C. As a result, the activation of spindle checkpoint protein, BubR1, and phosphorylation of histone H3 and MCAK were also eliminated in Aurora-C-overexpressing cells. Thus, our results suggest that aberrantly expressed Aurora-C in somatic cancer cells may impair SAC by displacing the centromeric localization of CPCs.  相似文献   

6.
Mitotic Centromere-Associated Kinesin (MCAK) is a member of the kinesin-13 subfamily of kinesin-related proteins. In mitosis, this microtubule-depolymerising kinesin seems to be implicated in chromosome segregation and in the correction of improper kinetochore-microtubule interactions, and its activity is regulated by the Aurora-B kinase. However, there are no published data on its behaviour and function during mammalian meiosis. We have analysed by immunofluorescence in squashed mouse spermatocytes, the distribution and possible function of MCAK, together with Aurora-B, during both meiotic divisions. Our results demonstrate that MCAK and Aurora-B colocalise at the inner domain of metaphase I centromeres. Thus, MCAK shows a “cone”-like three-dimensional distribution beneath and surrounding the closely associated sister kinetochores. During the second meiotic division, MCAK and Aurora-B also colocalise at the inner centromere domain as a band that joins sister kinetochores, but only during prometaphase II in unattached chromosomes. During chromosome congression to the metaphase II plate, MCAK relocalises and appears as a ring below each sister kinetochore. Aurora-B also relocalises to appear as a ring surrounding and beneath kinetochores but during late metaphase II. Our results demonstrate that the redistribution of MCAK at prometaphase II/metaphase II centromeres depends on tension across the centromere and/or on the interaction of microtubules with kinetochores. We propose that the perikinetochoric rings of MCAK and Aurora-B define a novel transient centromere domain at least in mouse chromosomes during meiosis. We discuss the possible functions of MCAK at the inner centromere domain and at the perikinetochoric ring during both meiotic divisions.  相似文献   

7.
A family of serine/threonine kinase Aurora constitutes a key regulator in the orchestration of mitotic events. The human Aurora paralogues Aurora-A, Aurora-B, and Aurora-C have a highly conserved catalytic domain. Extensive studies on the role of Aurora-A and Aurora-B have revealed distinct localizations and functions in regulating mitotic processes, whereas little is known about Aurora-C. The present study shows that human Aurora-C is a chromosomal passenger protein that forms complexes with Aurora-B and inner centromere protein (INCENP), which are known passenger proteins. We show that INCENP binds and activates Aurora-C in vivo and in vitro. Furthermore, Aurora-C co-expressed with INCENP elicits the phosphorylation of endogenous histone H3 in mammalian cells, even though this phosphorylation is not sufficient to establish chromosome condensation in interphase cells. We therefore suggest that Aurora-C is a novel chromosomal passenger protein that cooperates with Aurora-B to regulate mitotic chromosome dynamics in mammalian cells.  相似文献   

8.
The Aurora kinases are cell cycle-regulatory serine-threonine kinases that have been implicated in the function of the centrosomes, kinetechores, chromosome dynamics, and cytokinesis. In comparison with other tissues, there are high levels of expression of Aurora-B and -C in testis. What their respective roles in mammalian spermatogenesis are is an open question. Here we describe the expression and distribution patterns of the three kinases in mouse testis using in situ hybridization and immunohistochemistry. Importantly, the localization of Aurora-B is tightly regulated during spermatogenesis, whereas Aurora-C expression appears to be testis specific. To address the function of Aurora-B in spermatogenesis, we have generated transgenic mice using a pachytene-stage-specific promoter driving the expression of either wild-type Aurora-B or an inactive form of the kinase. Expression of the inactive Aurora-B results in abnormal spermatocytes, increased apoptosis, spermatogenic arrest, and subfertility defects. The function of Aurora-C may also be targeted in the Aurora-B transgenic mutants. To address the function of Aurora-C in testis, we generated Aurora-C knockout mice by homologous recombination. Remarkably, Aurora-C null mice were viable, yet the males had compromised fertility. Aurora-C mutant sperm display abnormalities that included heterogenous chromatin condensation, loose acrosomes, and blunted heads. These findings indicate that Aurora-B and Aurora-C serve specialized functions in mammalian spermatogenesis.  相似文献   

9.
Chromosome number, meiotic behavior, and pollen viability were analyzed in 15 species of two genera, Vriesea and Aechmea, native to Rio Grande do Sul, Brazil. This study is the first cytogenetic analysis of these taxa. The chromosome numbers are all n = 25, consistent with the proposed base number of x = 25 for Bromeliaceae. All examined taxa displayed regular bivalent pairing and chromosome segregation at meiosis. Observed meiotic abnormalities include univalents in metaphase I; missing or extra chromosomes and precocious division of centromeres in metaphase II; laggards in telophase I and anaphase II/telophase II. The high pollen viability (>88%) reflects a regular meiosis.  相似文献   

10.
Three lines of investigation have suggested that interactions between Survivin and the chromosomal passenger proteins INCENP and Aurora-B kinase may be important for mitotic progression. First, interference with the function of Survivin/BIR1, INCENP, or Aurora-B kinase leads to similar defects in mitosis and cytokinesis [1-7] (see [8] for review). Second, INCENP and Aurora-B exist in a complex in Xenopus eggs [9] and in mammalian cultured cells [7]. Third, interference with Survivin or INCENP function causes Aurora-B kinase to be mislocalized in mitosis in both C. elegans and vertebrates [5, 7, 9]. Here, we provide evidence that Survivin, Aurora-B, and INCENP interact physically and functionally. Direct visualization of Survivin-GFP in mitotic cells reveals that it localizes identically to INCENP and Aurora-B. Survivin binds directly to both Aurora-B and INCENP in yeast two-hybrid and in vitro pull-down assays. The in vitro interaction between Survivin and Aurora-B is extraordinarily stable in that it resists 3 M NaCl. Finally, Survivin and INCENP interact functionally in vivo; in cells in which INCENP localization is disrupted, Survivin adheres to the chromosomes and no longer concentrates at the centromeres or transfers to the anaphase spindle midzone. Our data provide the first biochemical evidence that Survivin can interact directly with members of the chromosomal passenger complex.  相似文献   

11.
M P Maguire 《Génome》1987,29(5):744-747
A supernumerary, tiny chromosome with a transposed centromere, in an apparently normal maize background, was observed through meiotic stages from pachytene through anaphase II. Departures from normal meiotic chromosome behavior were noted for this tiny chromosome. These included failure of the usual degree of condensation at pachytene, failure of synapsis, and most strikingly the ability of sister centromeres to interact with the spindle on schedule with the normal dyads at anaphase I, so that monads were commonly distributed to the poles for telophase I and then often lagged at anaphase II. Possible significance of the unusual behavior is discussed.  相似文献   

12.
Cohesion between sister chromatids is a prerequisite for accurate chromosome segregation during mitosis and meiosis. To allow chromosome condensation during prophase, the connections that hold sister chromatids together must be maintained but still permit extensive chromatin compaction. In Drosophila, null mutations in the orientation disruptor (ord) gene lead to meiotic nondisjunction in males and females because cohesion is absent by the time that sister kinetochores make stable microtubule attachments. We provide evidence that ORD is concentrated within the extrachromosomal domains of the nuclei of Drosophila primary spermatocytes during early G2, but accumulates on the meiotic chromosomes by mid to late G2. Moreover, using fluorescence in situ hybridization to monitor cohesion directly, we show that cohesion defects first become detectable in ord(null) spermatocytes shortly after the time when wild-type ORD associates with the chromosomes. After condensation, ORD remains bound at the centromeres of wild-type spermatocytes and persists there until centromeric cohesion is released during anaphase II. Our results suggest that association of ORD with meiotic chromosomes during mid to late G2 is required to maintain sister-chromatid cohesion during prophase condensation and that retention of ORD at the centromeres after condensation ensures the maintenance of centromeric cohesion until anaphase II.  相似文献   

13.
Survivin is a member of inhibitors of apoptosis proteins (IAPs), which have multiple regulatory functions in mitosis, but its roles in meiosis remain unknown. Here, we report its expression, localization and functions in mouse oocyte meiosis. Survivin displayed maximal expression levels in GV stages, and then gradually decreased from Pro-MI to MII stages. Immunofluorescent staining showed that survivin was restricted to the germinal vesicle, associated with centromeres from pro-metaphase I to metaphase I stages, distributed at the midzone and midbody of anaphase and telophase spindles, and located to centromeres at metaphase II stages. Depletion of survivin by antibody injection and morpholino injection resulted in severe chromosome misalignment, precocious polar body extrusion, and larger-than-normal polar bodies. Overexpression of survivin resulted in severe chromosome misalignment and prometaphase I or metaphase I arrest in a large proportion of oocytes. Our data suggest that survivin is required for chromosome alignment and that it may regulate spindle checkpoint activity during mouse oocyte meiosis.  相似文献   

14.
BACKGROUND: Survivin is a mammalian protein that carries a motif typical of the inhibitor of apoptosis (IAP)proteins, first identified in baculoviruses. Although baculoviral IAP proteins regulate cell death, the yeast Survivin homolog Bir1 is involved in cell division. To determine the function of Survivin in mammals, we analyzed the pattern of localization of Survivin protein during the cell cycle, and deleted its gene by homologous recombination in mice. RESULTS: In human cells, Survivin appeared first on centromeres bound to a novel para-polar axis during prophase/metaphase, relocated to the spindle midzone during anaphase/telophase, and disappeared at the end of telophase. In the mouse, Survivin was required for mitosis during development. Null embryos showed disrupted microtubule formation, became polyploid, and failed to survive beyond 4.5days post coitum. This phenotype, and the cell-cycle localization of Survivin, resembled closely those of INCENP. Because the yeast homolog of INCENP, Sli15, regulates the Aurora kinase homolog Ipl1p, and the yeast Survivin homolog Bir1 binds to Ndc10p, a substrate of Ipl1p, yeast Survivin, INCENP and Aurora homologs function in concert during cell division. CONCLUSIONS: In vertebrates, Survivin and INCENP have related roles in mitosis, coordinating events such as microtubule organization, cleavage-furrow formation and cytokinesis. Like their yeast homologs Bir1 and Sli15, they may also act together with the Aurora kinase.  相似文献   

15.
This work focuses on the assembly and transformation of the spindle during the progression through the meiotic cell cycle. For this purpose, immunofluorescent confocal microscopy was used in comparative studies to determine the spatial distribution of alpha- and gamma-tubulin and nuclear mitotic apparatus protein (NuMA) from late G2 to the end of M phase in both meiosis and mitosis. In pig endothelial cells, consistent with previous reports, gamma-tubulin was localized at the centrosomes in both interphase and M phase, and NuMA was localized in the interphase nucleus and at mitotic spindle poles. During meiotic progression in pig oocytes, gamma-tubulin and NuMA were initially detected in a uniform distribution across the nucleus. In early diakinesis and just before germinal vesicle breakdown, microtubules were first detected around the periphery of the germinal vesicle and cell cortex. At late diakinesis, a mass of multi-arrayed microtubules was formed around chromosomes. In parallel, NuMA localization changed from an amorphous to a highly aggregated form in the vicinity of the chromosomes, but gamma-tubulin localization remained in an amorphous form surrounding the chromosomes. Then the NuMA foci moved away from the condensed chromosomes and aligned at both poles of a barrel-shaped metaphase I spindle while gamma-tubulin was localized along the spindle microtubules, suggesting that pig meiotic spindle poles are formed by the bundling of microtubules at the minus ends by NuMA. Interestingly, in mouse oocytes, the meiotic spindle pole was composed of several gamma-tubulin foci rather than NuMA. Further, nocodazole, an inhibitor of microtubule polymerization, induced disappearance of the pole staining of NuMA in pig metaphase II oocytes, whereas the mouse meiotic spindle pole has been reported to be resistant to the treatment. These results suggest that the nature of the meiotic spindle differs between species. The axis of the pig meiotic spindle rotated from a perpendicular to a parallel position relative to the cell surface during telophase I. Further, in contrast to the stable localization of NuMA and gamma-tubulin at the spindle poles in mitosis, NuMA and gamma-tubulin became relocalized to the spindle midzone during anaphase I and telophase I in pig oocytes. We postulate that in the centrosome-free meiotic spindle, NuMA aggregates the spindle microtubules at the midzone during anaphase and telophase and that the polarity of meiotic spindle microtubules might become inverted during spindle elongation.  相似文献   

16.
Recent studies in simple model organisms have shown that centromere pairing is important for ensuring high-fidelity meiotic chromosome segregation. However, this process and the mechanisms regulating it in higher eukaryotes are unknown. Here we present the first detailed study of meiotic centromere pairing in mouse spermatogenesis and link it with key events of the G2/metaphase I transition. In mouse we observed no evidence of the persistent coupling of centromeres that has been observed in several model organisms. We do however find that telomeres associate in non-homologous pairs or small groups in B type spermatogonia and pre-leptotene spermatocytes, and this association is disrupted by deletion of the synaptonemal complex component SYCP3. Intriguingly, we found that, in mid prophase, chromosome synapsis is not initiated at centromeres, and centromeric regions are the last to pair in the zygotene-pachytene transition. In late prophase, we first identified the proteins that reside at paired centromeres. We found that components of the central and lateral element and transverse filaments of the synaptonemal complex are retained at paired centromeres after disassembly of the synaptonemal complex along diplotene chromosome arms. The absence of SYCP1 prevents centromere pairing in knockout mouse spermatocytes. The localization dynamics of SYCP1 and SYCP3 suggest that they play different roles in promoting homologous centromere pairing. SYCP1 remains only at paired centromeres coincident with the time at which some kinetochore proteins begin loading at centromeres, consistent with a role in assembly of meiosis-specific kinetochores. After removal of SYCP1 from centromeres, SYCP3 then accumulates at paired centromeres where it may promote bi-orientation of homologous centromeres. We propose that, in addition to their roles as synaptonemal complex components, SYCP1 and SYCP3 act at the centromeres to promote the establishment and/or maintenance of centromere pairing and, by doing so, improve the segregation fidelity of mammalian meiotic chromosomes.  相似文献   

17.
Spermatogenesis in Drosophila melanogaster serves as an excellent model system for the isolation and analysis of genes required in the control of chromosome segregation and cytokinesis. We report here the isolation and molecular characterization of a novel P-element induced allele of the des-1 gene, which leads to male sterility as a consequence of the failure of central spindle assembly in meiotic spermatocytes and the formation of aberrant meiotic end products characteristic of cytokinesis failure. We have raised affinity-purified antibodies against a Des-1 fusion protein, and localized the Des-1 protein in Drosophila spermatocytes. We show that the Des-1 protein is colocalized with mitochondria throughout male meiosis, becoming intimately associated with mitochondria along the spindle apparatus during anaphase and telophase, and with the Nebenkern, or mitochondrial derivative, of the meiotic end products. In addition, a significant association of Des-1 with the contractile ring is observed during anaphase and telophase of meiosis. These observations, together with the presence of six potential transmembrane domains in the Des-1 protein, raise the possibility that Des-1 may act as part of an anchoring mechanism that links membrane-bounded cellular compartments to components of the cytoskeleton.  相似文献   

18.
Sumoylation is an important post-translational modification in which SUMO (small ubiquitin-related modifier) proteins are bonded covalently to their substrates. Studies on the roles of sumoylation in cell cycle regulation have been emerging in both mitosis from yeast to mammals and meiosis in budding yeast, but the functions of sumoylation in mammalian meiosis, especially in oocyte meiotic maturation are not well known. Here, we examined the localization and expression of SUMO-1 and SUMO-2/3, the two basic proteins in the sumoylation pathway and investigated their roles through over-expression of Senp2 during mouse oocyte maturation. Immunofluorescent staining revealed differential patterns of SUMO-1 and SUMO-2/3 localization: SUMO-1 was localized to the spindle poles in prometaphase I, MI and MII stages, around the separating homologues in anaphase I and telophase I stages of first meiosis, while SUMO-2/3 was mainly concentrated near centromeres during mouse oocyte maturation. Immunoblot analysis uncovered the different expression profiles of SUMO-1 and SUMO-2/3 modified proteins during mouse oocyte maturation. Over-expression of Senp2, a SUMO-specific isopeptidase, caused changes of SUMO-modified proteins and led to defects in MII spindle organization in mature eggs. These results suggest that the SUMO pathway may play an indispensable role during mouse oocyte meiotic maturation.  相似文献   

19.
Protein sumoylation regulates a variety of nuclear functions and has been postulated to be involved in meiotic chromosome dynamics as well as other processes of spermatogenesis. Here, the expression and distribution of sumoylation pathway genes and proteins were determined in mouse male germ cells, with a particular emphasis on prophase I of meiosis. Immunofluorescence microscopy revealed that SUMO1, SUMO2/3 and UBE2I (also known as UBC9) were localized to the XY body in pachytene and diplotene spermatocytes, while only SUMO2/3 and UBE2I were detected near centromeres in metaphase I spermatocytes. Quantitative RT-PCR and Western blotting were used to examine the expression of sumoylation pathway genes and proteins in enriched preparations of leptotene/zygotene spermatocytes, prepubertal and adult pachytene spermatocytes, as well as round spermatids. Two general expression profiles emerged from these data. The first profile, where expression was more prominent during meiosis, identified sumoylation pathway participants that could be involved in meiotic chromosome dynamics. The second profile, elevated expression in post-meiotic spermatids, suggested proteins that could be involved in spermiogenesis-related sumoylation events. In addition to revealing differential expression of protein sumoylation mediators, which suggests differential functioning, these data demonstrate the dynamic nature of SUMO metabolism during spermatogenesis.  相似文献   

20.
BACKGROUND: The halving of chromosome number that occurs during meiosis depends on three factors. First, homologs must pair and recombine. Second, sister centromeres must attach to microtubules that emanate from the same spindle pole, which ensures that homologous maternal and paternal pairs can be pulled in opposite directions (called homolog biorientation). Third, cohesion between sister centromeres must persist after the first meiotic division to enable their biorientation at the second. RESULTS: A screen performed in fission yeast to identify meiotic chromosome missegregation mutants has identified a conserved protein called Sgo1 that is required to maintain sister chromatid cohesion after the first meiotic division. We describe here an orthologous protein in the budding yeast S. cerevisiae (Sc), which has not only meiotic but also mitotic chromosome segregation functions. Deletion of Sc SGO1 not only causes frequent homolog nondisjunction at meiosis I but also random segregation of sister centromeres at meiosis II. Meiotic cohesion fails to persist at centromeres after the first meiotic division, and sister centromeres frequently separate precociously. Sgo1 is a kinetochore-associated protein whose abundance declines at anaphase I but, nevertheless, persists on chromatin until anaphase II. CONCLUSIONS: The finding that Sgo1 is localized to the centromere at the time of the first division suggests that it may play a direct role in preventing the removal of centromeric cohesin. The similarity in sequence composition, chromosomal location, and mutant phenotypes of sgo1 mutants in two distant yeasts with that of MEI-S332 in Drosophila suggests that these proteins define an orthologous family conserved in most eukaryotic lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号