首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The prevalence of sexual reproduction in most animal species despite its considerable costs such as useless males, energy spent on mating, the cost of meiosis and genome dilution remains a puzzle in evolutionary theory. One prominent single factor attempt to solve this persistent puzzle is the claim that sexual reproduction is instrumental in eliminating deleterious alleles from the species genome by the mechanism of recombination. There are three major versions of the deleterious allele hypothesis: First, the mutational deterministic hypothesis (MDH), which rests on the assumption of negative epistasis, predicts that recombination will help to purge the species genome of deleterious alleles by breaking apart linkages between these alleles. The assumption is that the joint negative effects of linked deleterious alleles is sometimes greater than the effects of the alleles considered separately. Second, there is the hypothesis that sexual reproduction speeds up purifying (negative) selection, which purges the genome of deleterious alleles. Alleles that are less deleterious than the wild type are naturally selected. These alleles, attained via recombination, are sometimes ‘leaky’ mutations giving rise to reduced functionality of attendant proteins. This hypothesis does not necessarily rest on the assumption of negative epistasis, which some argue is relatively rare in nature (Kouyos, Silander and Bonhoeffer (2012)) and which arguably could be seen as a virtue of the purifying selection hypothesis vs. the MDH. Third, Muller's ratchet hypothesis predicts that recombination will help to prevent the buildup of deleterious mutations by the mechanism of recombination. In this study, we focus primarily on testing the purifying selection hypothesis. We performed an individual-based model computer simulation using the program EcoSim to test this hypothesis. The experimental runs for sexual reproduction, asexual reproduction and facultative reproduction involved introducing a deleterious allele into the genome, which exacts an intermediate-level energy penalty on individuals. It was found that whereas on average, deleteriousness consistently declined over 18,000 time-steps due to recombination in sexual reproduction, deleteriousness did not decline for asexual and facultative runs. These results corroborate the hypothesis that recombination due to sexual reproduction helps to eliminate deleterious alleles from the genome through the selection of reduced function mutations.  相似文献   

2.
Important questions remain about the long-term survival and adaptive significance of eukaryotic asexual lineages. Numerous papers dealing with sex advantages still continued to compare parthenogenetic populations versus sexual populations arguing that sex demonstrates a better fitness. Because asexual lineages do not possess any recombination mechanisms favoring rapid changes in the face of severe environmental conditions, they should be considered as an evolutionary dead-end. Nevertheless, reviewing literature dealing with asexual reproduction, it is possible to draw three stimulating conclusions. (1) Asexual reproduction in eukaryotes considerably differs from prokaryotes which experience recombination but neither meiosis nor syngamy. Recombination and meiosis would be a driving force for sexual reproduction. Eukaryotes should therefore be considered as a continuum of sexual organisms that are more or less capable (and sometimes incapable) of sexual reproduction. (2) Rather than revealing ancestral eukaryotic forms, most known lineages of asexual eukaryotes have lost sex due to a genomic conflict affecting their sexual capacity. Thus, it could be argued that hybridization is a major cause of their asexuality. Asexuality may have evolved as a reproductive mechanism reducing conflict within organisms. (3) It could be proposed that, rather than being generalists, parthenogenetic hybrid lineages could be favored when exploiting peculiar restricted ecological niches, following the “frozen niche variation” model. Although hybrid events may result in sex loss, probably caused by genomic conflict, asexual hybrids could display new original adaptive traits, and the rapid colonization of environments through clonal reproduction could favor their long-term survival, leading to evolutionary changes and hybrid speciation. Examination of the evolutionary history of asexual lineages reveals that evolutionary processes act through transitional stages in which even very small temporary benefits may be enough to counter the expected selective disadvantages.  相似文献   

3.
Meiosis is essential for sexual reproduction and recombination is a critical step required for normal meiosis. Understanding the underlying molecular mechanisms that regulate recombination is important for medical, agricultural and ecological reasons. Readily available molecular and cytological tools make Arabidopsis an excellent system to study meiosis. Here we review recent developments in molecular genetic analyses on meiotic recombination. These include studies on plant homologs of yeast and animal genes, as well as novel genes that were first identified in plants. The characterizations of these genes have demonstrated essential functions from the initiation of recombination by double-strand breaks to repair of such breaks, from the formation of doubie-HoUiday junctions to possible resolution of these junctions, both of which are critical for crossover formation. The recent advances have ushered a new era in plant meiosis, in which the combination of genetics, genomics, and molecular cytology can uncover important gene functions.  相似文献   

4.
F J Bowring  D E Catcheside 《Genetics》1999,152(3):965-969
In response to a conflict between two mapping studies in the predicted orientation of the allele map with respect to the centromere, Fincham proposed that recombination events at the Neurospora am locus rarely have an associated crossover. Fincham considered that the elevated levels of crossing over between flanking markers in am recombinants resulted from negative interference, an increased probability of a nearby second event, and on this basis predicted a clustering of crossing over near am in these recombinants. In this article we reevaluate the data from three mapping studies of the am locus and report molecular evidence that shows crossovers to be clustered immediately proximal to am in am recombinants.  相似文献   

5.
To assist investigation of the effect of sequence heterology on recombination in Neurospora crassa, we inserted the Herpes simplex thymidine kinase gene (TK) as an unselected marker on linkage group I, giving a gene order of Cen-his-3-TK-cog-lpl. We show here that in crosses heterozygous for TK, conversion of a his-3 allele on one homolog is accompanied by transfer of the heterologous sequence between cog and his-3 from the other homolog, indicating that recombination is initiated centromere-distal of TK. We have identified a 10-nucleotide motif in the cog region that, although unlikely to be sufficient for hotspot activity, is required for high-frequency recombination and, because conversion of silent sequence markers declines on either side, may be the recombination initiation site. Additionally, we have mapped conversion tracts in His(+) progeny of a translocation heterozygote, in which the translocation breakpoint separates cog from the 5' end of his-3. We present molecular evidence of recombination on both sides of the breakpoint. Because recombination is initiated close to cog and the event must therefore cross the translocation breakpoint, we suggest that template switching occurs in some recombination events, with repair synthesis alternating between use of the homolog and the initiating chromatid as template.  相似文献   

6.
C. W. Birky-Jr. 《Genetics》1996,144(1):427-437
Little attention has been paid to the consequences of long-term asexual reproduction for sequence evolution in diploid or polyploid eukaryotic organisms. Some elementary theory shows that the amount of neutral sequence divergence between two alleles of a protein-coding gene in an asexual individual will be greater than that in a sexual species by a factor of 2tu, where t is the number of generations since sexual reproduction was lost and u is the mutation rate per generation in the asexual lineage. Phylogenetic trees based on only one allele from each of two or more species will show incorrect divergence times and, more often than not, incorrect topologies. This allele sequence divergence can be stopped temporarily by mitotic gene conversion, mitotic crossing-over, or ploidy reduction. If these convergence events are rare, ancient asexual lineages can be recognized by their high allele sequence divergence. At intermediate frequencies of convergence events, it will be impossible to reconstruct the correct phylogeny of an asexual clade from the sequences of protein coding genes. Convergence may be limited by allele sequence divergence and heterozygous chromosomal rearrangements which reduce the homology needed for recombination and result in aneuploidy after crossing-over or ploidy cycles.  相似文献   

7.
Sexual reproduction brings together reproductive partners whose long‐term interests often differ, raising the possibility of conflict over their reproductive investment. Males that enhance maternal investment in their offspring gain fitness benefits, even if this compromises future reproductive investment by iteroparous females. When the conflict occurs at a genomic level, it may be uncovered by crossing divergent populations, as a mismatch in the coevolved patterns of paternal manipulation and maternal resistance may generate asymmetric embryonic growth. We report such an asymmetry in reciprocal crosses between populations of the fish Girardinichthys multiradiatus. We also show that a fragment of a gene which can influence embryonic growth (Insulin‐Like Growth Factor 2; igf2) exhibits a parent‐of‐origin methylation pattern, where the maternally inherited igf2 allele has much more 5′ cytosine methylation than the paternally inherited allele. Our findings suggest that male manipulation of maternal investment may have evolved in fish, while the parent‐of‐origin methylation pattern appears to be a potential candidate mechanism modulating this antagonistic coevolution process. However, disruption of other coadaptive processes cannot be ruled out, as these can lead to similar effects as conflict.  相似文献   

8.
9.
Studies of natural hybridization have suggested that it may be a creative stimulus for adaptive evolution and speciation. An important step in this process is the establishment of fit recombinant genotypes that are buffered from subsequent recombination with unlike genotypes. We used molecular markers and a two-generation sampling strategy to infer the extent of recombination in a Louisiana iris hybrid zone consisting predominantly of Iris fulva-type floral phenotypes. Genotypic diversity was fairly high, indicating that sexual reproduction is frequent relative to clonal reproduction. However, we observed strong spatial genetic structure even after controlling for clonality, which implies a low level of pollen and seed dispersal. We therefore used cluster analysis to explore the hypothesis that the fulva-type hybrids are an admixture of groups between which there has been limited recombination. Our results indicate that several such groups are present in the population and are strongly localized spatially. This spatial pattern is not attributable strictly to a lack of mating opportunities between dissimilar genotypes for two reasons: (1) relatedness of flowering pairs was uncorrelated with the degree of overlap in flowering, and (2) paternity analysis shows that pollen movement among the outcross fraction occurred over large distances, with roughly half of all paternity attributed to pollen flow from outside the population. We also found evidence of strong inbreeding depression, indicated by contrasting estimates of the rate of self-fertilization and the average inbreeding coefficient of fulva-type hybrids. We conclude that groups of similar hybrid genotypes can be buffered from recombination at small spatial scales relative to pollen flow, and selection against certain recombinant genotypes may be as important as or more important than clonal reproduction and inbreeding.  相似文献   

10.
《Fungal biology》2021,125(9):725-732
Filamentous fungi grow by the elaboration of hyphae, which may fuse to form a network as a colony develops. Fusion of hyphae can occur between genetically different individuals, provided they share a common allele at loci affecting somatic compatibility. Diversity in somatic compatibility phenotypes reduces the frequency of hyphal fusion in a population, thereby slowing the spread of deleterious genetic elements such as viruses and plasmids, which require direct cytoplasmic contact for transmission. Diverse somatic compatibility phenotypes can be generated by recombining alleles through sexual reproduction, but this mechanism may not fully account for the diversity found in nature. For example, multiple compatibility phenotypes of Fusarium circinatum were shown to be associated with the same clonal lineage, which implies they were derived by a mutation rather than recombination through sexual reproduction. Experimental tests of this hypothesis confirmed that spontaneous changes in somatic compatibility can occur at a frequency between 5 and 8 per million spores. Genomic analysis of F. circinatum strains with altered somatic compatibility revealed no consistent evidence of recombination and supported the hypothesis that a spontaneous mutation generated the observed phenotypic change. Genes known to be involved in somatic compatibility had no mutations, suggesting that mutation occurred in a gene with an as yet unexplored function in somatic compatibility.  相似文献   

11.
A model is presented for the evolution and control of generative apomixis—a collective term for apomixis in animals and diplosporous apomixis in flowering plants. Its development takes into account data obtained from studies of apomictic-like processes in sexual organisms and in non-apomictic parthenogens, as well as data obtained from studies of generative apomicts. This approach provides insights into the evolution and control of generative apomixis that cannot be obtained from studies of generative apomicts alone. It is argued that the control of the avoidance of meiotic reduction during egg production in generative apomicts resides at a single locus, the identity of which can vary between lineages. This variation accounts for the observed variation between taxa in the pattern of avoidance of meiotic reduction. The affected locus contains a wild-type allele that codes for meiotic reduction and excess copies of a mutant allele that codes for its avoidance. The dominance relationship between these is determined by their ratio and by the environment. Environmental differences between female generative cells and somatic cells are such that the phenotypic expression of the mutant allele is favoured in the former, while that of the wild-type allele is favoured in the latter. This is important, for the locus is also involved in the control of mitosis which would be disrupted by the expression of the mutant allele in somatic cells. The requirement to maintain a viable pattern of growth and development explains why the wild-type allele is retained by generative apomicts, and this in turn explains why the ability to produce meiotically reduced eggs is retained by facultative forms and why it appears to be suppressed in, rather than absent from, obligate forms. The requirement for excess copies of the mutant allele in generative cells explains why generative apomicts are typically polyploid, as this condition provides a simple and effective means of generating the correct balance of mutant and wild-type alleles. Environmental effects can also lead to the dominance relationship between wild-type and mutant alleles varying between generative cells. In plants, this can lead to the apomixis gene being expressed, and thus to meiotic reduction being avoided, in only some ovules. Meiotically reduced, as well as meiotically unreduced, eggs are produced when this occurs. If compatible and viable pollen is available the meiotically reduced eggs may be fertilized, resulting in these organisms reproducing as facultative apomicts. It is argued that the control and evolution of parthenogenesis in generative apomicts varies between taxa. In some, the parthenogenetic initiation of embryos may result from the acquisition of a parthenogenesis gene or genes; but there is no reason to believe that this is either a general or a common requirement. Indeed, in some it may be an ancestral trait, these apomicts differing from their sexual ancestors in the ability to mature, rather than in the ability to initiate, embryos from unfertilized eggs; or it may result from physiological or developmental changes induced, for example, by polyploidization, hybridization, or the avoidance of meiotic reduction. In some plants it may be induced by pollination (without fertilization) or by the activity of a developing endosperm. Although it is argued that most generatively apomictic lineages may have acquired this form of reproduction relatively easily, by the acquisition of a mutation at a single locus, it is argued that newly initiated lineages may often be reproductively inefficient. These will begin to accumulate mutations that improve the efficiency of apomictic reproduction. Thus several loci may be involved in the control of generative apomixis in established lineages, even though only a single locus was involved in its initiation in these lineages. Care must be taken to distinguish between these initiator and modifier genes when considering the evolution of generative apomixis. Finally, it is argued that although generatively apomictic lineages have easily acquired this form of reproduction, its evolution in some taxa may be so difficult, requiring the acquisition of mutations simultaneously at two or more loci, that these may never acquire it. Thus, evidence obtained from taxa that have successfully made the transition from sexual reproduction to generative apomixis that its evolution was straightforward should not be used as evidence that its evolution will always be relatively easily achieved. Its uneven taxonomic distribution indicates that it is much more easily evolved by some taxonomic groups than by others.  相似文献   

12.
Inversions may contribute to ecological adaptation and phenotypic diversity, and with the advent of “second” and “third” generation sequencing technologies, the ability to detect inversion polymorphisms has been enhanced dramatically. A key molecular consequence of an inversion is the suppression of recombination allowing independent accumulation of genetic changes between alleles over time. This may lead to the development of divergent haplotype blocks maintained by balancing selection. Thus, divergent haplotype blocks are often considered as indicating the presence of an inversion. In this paper, we first review the features of a 7.7 Mb inversion causing the Rose‐comb phenotype in chicken, as a model for how inversions evolve and directly affect phenotypes. Second, we compare the genetic basis for alternative mating strategies in ruff and timing of reproduction in Atlantic herring, both associated with divergent haplotype blocks. Alternative male mating strategies in ruff are associated with a 4.5 Mb inversion that occurred about 4 million years ago. In fact, the ruff inversion shares some striking features with the Rose‐comb inversion such as disruption of a gene at one of the inversion breakpoints and generation of a new allele by recombination between the inverted and noninverted alleles. In contrast, inversions do not appear to be a major reason for the fairly large haplotype blocks (range 10–200 kb) associated with ecological adaptation in the herring. Thus, it is important to note that divergent haplotypes may also be maintained by natural selection in the absence of structural variation.  相似文献   

13.
In the eusocial Hymenoptera, reproductive division of labour is a key aspect of colony organisation. In most of its species, workers are sterile and are unable to reproduce, while the queen monopolises reproduction. When workers are able to reproduce, a conflict with the queen or with other workers over male production is predicted. Because this reproduction may involve costs for the colony, the potential conflict over male parentage gives rise to important questions, such as what are the proximate mechanisms that allow a queen to control the reproductive potential of its workers, and which factors make some workers fertile and others not. In the groups where it occurs, an important mechanism for the regulation of reproduction is trophallaxis (the process of mutual feeding through regurgitation that occurs in several species of social insects). Trophallaxis gives dominant individuals a trophic advantage by taking nutrients from submissive individuals. In advanced eusocial species of bees, trophallaxis may also serve as an alternative hierarchical interaction in the absence of agonistic conflicts. In this way, trophallaxis not only represents an alternative path for hierarchical interactions, but it may be evolutionary linked to intracolonial conflict among workers.  相似文献   

14.
The reciprocal exchange of genetic information between homologous chromosomes during meiotic recombination is essential to secure balanced chromosome segregation and to promote genetic diversity. The chromosomal position and frequency of reciprocal genetic exchange shapes the efficiency of breeding programmes and influences crop improvement under a changing climate. In large genome cereals, such as wheat and barley, crossovers are consistently restricted to subtelomeric chromosomal regions, thus preventing favourable allele combinations being formed within a considerable proportion of the genome, including interstitial and pericentromeric chromatin. Understanding the key elements driving crossover designation is therefore essential to broaden the regions available for crossovers. Here, we followed early meiotic chromatin dynamism in cereals through the visualisation of a homologous barley chromosome arm pair stably transferred into the wheat genetic background. By capturing the dynamics of a single chromosome arm at the same time as detecting the undergoing events of meiotic recombination and synapsis, we showed that subtelomeric chromatin of homologues synchronously transitions to an open chromatin structure during recombination initiation. By contrast, pericentromeric and interstitial regions preserved their closed chromatin organisation and become unpackaged only later, concomitant with initiation of recombinatorial repair and the initial assembly of the synaptonemal complex. Our results raise the possibility that the closed pericentromeric chromatin structure in cereals may influence the fate decision during recombination initiation, as well as the spatial development of synapsis, and may also explain the suppression of crossover events in the proximity of the centromeres.  相似文献   

15.
Most asexual species of fungi have either lost sexuality recently, or they experience recombination by cryptic sexual reproduction. Verticillium dahliae is a plant-pathogenic, ascomycete fungus with no known sexual stage, even though related genera have well-described sexual reproduction. V. dahliae reproduces mitotically and its population structure is highly clonal. However, previously described discrepancies in phylogenetic relationships among clonal lineages may be explained more parsimoniously by recombination than mutation; therefore, we looked for evidence of recombination within and between clonal lineages. Genotyping by sequencing was performed on 141 V. dahliae isolates from diverse geographic and host origins, resulting in 26,748 single-nucleotide polymorphisms (SNPs). We found a strongly clonal population structure with the same lineages as described previously by vegetative compatibility groups (VCGs) and molecular markers. We detected 443 recombination events, evenly distributed throughout the genome. Most recombination events detected were between clonal lineages, with relatively few recombinant haplotypes detected within lineages. The only three isolates with mating type MAT1-1 had recombinant SNP haplotypes; all other isolates had mating type MAT1-2. We found homologs of eight meiosis-specific genes in the V. dahliae genome, all with conserved or partially conserved protein domains. The extent of recombination and molecular signs of sex in (mating-type and meiosis-specific genes) suggest that V. dahliae clonal lineages arose by recombination, even though the current population structure is markedly clonal. Moreover, the detection of new lineages may be evidence that sexual reproduction has occurred recently and may potentially occur under some circumstances. We speculate that the current clonal population structure, despite the sexual origin of lineages, has arisen, in part, as a consequence of agriculture and selection for adaptation to agricultural cropping systems.  相似文献   

16.
Meiosis is a fundamental and evolutionarily conserved process that is central to the life cycles of all sexually reproducing eukaryotes. An understanding of this process is critical to furthering research on reproduction, fertility, genetics and breeding. Plants have been used extensively in cytogenetic studies of meiosis during the last century. Until recently, our knowledge of the molecular and functional aspects of meiosis has emerged from the study of non-plant model organisms, especially budding yeast. However, the emergence of Arabidopsis thaliana as the model organism for plant molecular biology and genetics has enabled significant progress in the characterisation of key genes and proteins controlling plant meiosis. The development of molecular and cytological techniques in Arabidopsis, besides allowing investigation of the more conserved aspects of meiosis, are also providing insights into features of this complex process which may vary between organisms. This review highlights an example of this recent progress by focussing on ASY1, a meiosis-specific Arabidopsis protein which shares some similarity with the N-terminus region of the yeast axial core-associated protein, HOP1, a component of a multiprotein complex which acts as a meiosis-specific barrier to sister-chromatid repair in budding yeast. In the absence of ASY1, synapsis is interrupted and chiasma formation is dramatically reduced. ASY1 protein is initially detected during early meiotic G2 as numerous foci distributed over the chromatin. As G2 progresses the signal appears to be increasingly continuous and is closely associated with the axial elements. State-of-the-art cytogenetic techniques have revealed that initiation of recombination is synchronised with the formation of the chromosome axis. Furthermore, in the context of the developing chromosome axes, ASY1 plays a crucial role in co-ordinating the activity of a key member of the homologous recombination machinery, AtDMC1.  相似文献   

17.
In the budding yeast Saccharomyces cerevisiae initiation and progression through the mitotic cell cycle are determined by the sequential activity of the cyclin-dependent kinase Cdc28. The role of this kinase in entry and progression through the meiotic cycle is unclear, since all cdc28 temperature-sensitive alleles are leaky for meiosis. We used a "heat-inducible Degron system" to construct a diploid strain homozygous for a temperature-degradable cdc28-deg allele. We show that this allele is nonleaky, giving no asci at the nonpermissive temperature. We also show, using this allele, that Cdc28 is not required for premeiotic DNA replication and commitment to meiotic recombination. IME2 encodes a meiosis-specific hCDK2 homolog that is required for the correct timing of premeiotic DNA replication, nuclear divisions, and asci formation. Moreover, in ime2Delta diploids additional rounds of DNA replication and nuclear divisions are observed. We show that the delayed premeiotic DNA replication observed in ime2Delta diploids depends on a functional Cdc28. Ime2Delta cdc28-4 diploids arrest prior to initiation of premeiotic DNA replication and meiotic recombination. Ectopic overexpression of Clb1 at early meiotic times advances premeiotic DNA replication, meiotic recombination, and nuclear division, but the coupling between these events is lost. The role of Ime2 and Cdc28 in initiating the meiotic pathway is discussed.  相似文献   

18.
According to the Reduction Principle, when a recombination-reducing allele is introduced near an equilibrium that depends on recombination, that allele will increase in frequency. If the allele increases the recombination rate, it will be expelled from the population. There are known cases where this principle fails. In this respect, an interesting question is what kind of two-sex viability regimes support a general Reduction Principle. In this paper, we construct a model of viabilities, due to two autosomal linked genes, which differ between the sexes, such that recombination is different in the sexes. A complete analysis is provided for the case where recombination is absent in one sex. It is proved that the Reduction Principle is still valid for recombination in the other sex.Research supported in part by NIH grants GM28016 and GM10452  相似文献   

19.
Several DNA-damage detection and repair mechanisms have evolved to repair double-strand breaks induced by mutagens. Later in evolutionary history, DNA single- and double-strand cuts made possible immune diversity by V(D)J recombination and recombination at meiosis. Such cuts are induced endogenously and are highly regulated and controlled. In meiosis, DNA cuts are essential for the initiation of homologous recombination, and for the formation of joint molecule and crossovers. Many proteins that function during somatic DNA-damage detection and repair are also active during homologous recombination. However, their meiotic functions may be altered from their somatic roles through localization, posttranslational modifications and/or interactions with meiosis-specific proteins. Presumably, somatic repair functions and meiotic recombination diverged during evolution, resulting in adaptations specific to sexual reproduction. (c) 2005 Wiley Periodicals, Inc.  相似文献   

20.
Mutations which improve the efficiency of recombination should affect either the proteins which mediate recombination or their substrate, DNA itself. The former mutations would be localized to a few sites. The latter would be dispersed. Studies of hybridization between RNA molecules have suggested that recombination may be initiated by a homology search involving the "kissing" of the tips of stem loops. This predicts that, in the absence of other constraints, mutations which assist the formation of stem loops would be favored. From comparisons of the folding of normal and shuffled DNA sequences, I present evidence for an evolutionary selection pressure to distribute stem loops generally throughout genomes. I propose that this early pressure came into conflict with later local pressures to impose information concerning specific function. The conflict was accommodated by permitting sections of DNA concerned with a specific function to evolve in dispersed segments. Traces of the conflict seem to be present in some modern intron-containing genes. Thus, introns may have allowed the interspersing of selectively advantageous stem loops in coding regions of DNA.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号