首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Biophysical journal》2022,121(20):3795-3810
Fluorescence recovery after photobleaching (FRAP) is a widely used biological experiment to study the kinetics of molecules that react and move randomly. Since the development of FRAP in the 1970s, many reaction-diffusion models have been used to interpret FRAP data. However, intracellular molecules are widely observed to move by anomalous subdiffusion instead of normal diffusion. In this article, we extend a popular reaction-diffusion model of FRAP to the case of subdiffusion modeled by a fractional diffusion equation. By analyzing this reaction-subdiffusion model, we show that FRAP data are consistent with both diffusive and subdiffusive motion in many scenarios. We illustrate this general result by fitting our model to FRAP data from glucocorticoid receptors in a cell nucleus. We further show that the assumed model of molecular motion (normal diffusion or subdiffusion) strongly impacts the biological parameter values inferred from a given experimentally observed FRAP curve. We additionally analyze our model in three simplified parameter regimes and discuss parameter identifiability for varying subdiffusion exponents.  相似文献   

2.
Fluorescence recovery after photobleaching (FRAP) is a powerful technique to study molecular dynamics inside living cells. During the past years, several laboratories have used FRAP to image the motion of RNA-protein and other macromolecular complexes in the nucleus and cytoplasm. In the case of mRNAs, there is growing evidence indicating that these molecules assemble into large ribonucleoprotein complexes that diffuse throughout the nucleus by Brownian motion. However, estimates of the corresponding diffusion rate yielded values that differ by up to one order of magnitude. In vivo labeling of RNA relies on indirect tagging with a fluorescent probe, and here we show how the binding affinity of the probe to the target RNA influences the effective diffusion estimates of the resulting complex. We extend current reaction-diffusion models for FRAP by allowing for diffusion of the bound complex. This more general model can be used to fit any fluorescence recovery curve involving two interacting mobile species in the cell (a fluorescent probe and its target substrate). The results show that interpreting FRAP data in light of the new model reconciles the discrepant mRNA diffusion-rate values previously reported.  相似文献   

3.
Fluorescence decay after photoactivation (FDAP) and fluorescence recovery after photobleaching (FRAP) are well established approaches for studying the interaction of the microtubule (MT)-associated protein tau with MTs in neuronal cells. Previous interpretations of FDAP/FRAP data have revealed dwell times of tau on MTs in the range of several seconds. However, this is difficult to reconcile with a dwell time recently measured by single-molecule analysis in neuronal processes that was shorter by two orders of magnitude. Questioning the validity of previously used phenomenological interpretations of FDAP/FRAP data, we have generalized the standard two-state reaction-diffusion equations by 1), accounting for the parallel and discrete arrangement of MTs in cell processes (i.e., homogeneous versus heterogeneous distribution of tau-binding sites); and 2), explicitly considering both active (diffusion upon MTs) and passive (piggybacking upon MTs at rates of slow axonal transport) motion of bound tau. For some idealized cases, analytical solutions were derived. By comparing them with the full numerical solution and Monte Carlo simulations, the respective validity domains were mapped. Interpretation of our FDAP data (from processes of neuronally differentiated PC12 cells) in light of the heterogeneous formalism yielded independent estimates for the association (∼2 ms) and dwell (∼100 ms) times of tau to/on a single MT rather than in an MT array. The dwell time was shorter by orders of magnitude than that in a previous report where a homogeneous topology of MTs was assumed. We found that the diffusion of bound tau was negligible in vivo, in contrast to an earlier report that tau diffuses along the MT lattice in vitro. Methodologically, our results demonstrate that the heterogeneity of binding sites cannot be ignored when dealing with reaction-diffusion of cytoskeleton-associated proteins. Physiologically, the results reveal the behavior of tau in cellular processes, which is noticeably different from that in vitro.  相似文献   

4.
Fluorescence recovery after photobleaching (FRAP) is used to obtain quantitative information about molecular diffusion and binding kinetics at both cell and tissue levels of organization. FRAP models have been proposed to estimate the diffusion coefficients and binding kinetic parameters of species for a variety of biological systems and experimental settings. However, it is not clear what the connection among the diverse parameter estimates from different models of the same system is, whether the assumptions made in the model are appropriate, and what the qualities of the estimates are. Here we propose a new approach to investigate the discrepancies between parameters estimated from different models. We use a theoretical model to simulate the dynamics of a FRAP experiment and generate the data that are used in various recovery models to estimate the corresponding parameters. By postulating a recovery model identical to the theoretical model, we first establish that the appropriate choice of observation time can significantly improve the quality of estimates, especially when the diffusion and binding kinetics are not well balanced, in a sense made precise later. Secondly, we find that changing the balance between diffusion and binding kinetics by changing the size of the bleaching region, which gives rise to different FRAP curves, provides a priori knowledge of diffusion and binding kinetics, which is important for model formulation. We also show that the use of the spatial information in FRAP provides better parameter estimation. By varying the recovery model from a fixed theoretical model, we show that a simplified recovery model can adequately describe the FRAP process in some circumstances and establish the relationship between parameters in the theoretical model and those in the recovery model. We then analyze an example in which the data are generated with a model of intermediate complexity and the parameters are estimated using models of greater or less complexity, and show how sensitivity analysis can be used to improve FRAP model formulation. Lastly, we show how sophisticated global sensitivity analysis can be used to detect over-fitting when using a model that is too complex.  相似文献   

5.
At present, fluorescence recovery after photobleaching (FRAP) data are interpreted using various types of reaction-diffusion (RD) models: the model type is usually fixed first, and corresponding model parameters are inferred subsequently. In this article, we describe what we believe to be a novel approach for RD modeling without using any assumptions of model type or parameters. To the best of our knowledge, this is the first attempt to address both model-type and parameter uncertainties in inverting FRAP data. We start from the most general RD model, which accounts for a flexible number of molecular fractions, all mobile, with different diffusion coefficients. The maximal number of possible binding partners is identified and optimal parameter sets for these models are determined in a global search of the parameter-space using the Simulated Annealing strategy. The numerical performance of the described techniques was assessed using artificial and experimental FRAP data. Our general RD model outperformed the standard RD models used previously in modeling FRAP measurements and showed that intracellular molecular mobility can only be described adequately by allowing for multiple RD processes. Therefore, it is important to search not only for the optimal parameter set but also for the optimal model type.  相似文献   

6.
Non-integral membrane proteins frequently act as transduction hubs in vital signaling pathways initiated at the plasma membrane (PM). Their biological activity depends on dynamic interactions with the PM, which are governed by their lateral and cytoplasmic diffusion and membrane binding/unbinding kinetics. Accurate quantification of the multiple kinetic parameters characterizing their membrane interaction dynamics has been challenging. Despite a fair number of approximate fitting functions for analyzing fluorescence recovery after photobleaching (FRAP) data, no approach was able to cope with the full diffusion-exchange problem. Here, we present an exact solution and matlab fitting programs for FRAP with a stationary Gaussian laser beam, allowing simultaneous determination of the membrane (un)binding rates and the diffusion coefficients. To reduce the number of fitting parameters, the cytoplasmic diffusion coefficient is determined separately. Notably, our equations include the dependence of the exchange kinetics on the distribution of the measured protein between the PM and the cytoplasm, enabling the derivation of both k(on) and k(off) without prior assumptions. After validating the fitting function by computer simulations, we confirm the applicability of our approach to live-cell data by monitoring the dynamics of GFP-N-Ras mutants under conditions with different contributions of lateral diffusion and exchange to the FRAP kinetics.  相似文献   

7.
8.
BackgroundFluorescence recovery after photobleaching (FRAP) studies can provide kinetic information about proteins in cells. Single point mutations can significantly affect the binding kinetics of proteins and result in variations in the recovery half time (t50) measured in FRAP experiments. FRAP measurements of linker histone (LH) proteins in the cell nucleus have previously been reported by Brown et al. (2006) and Lele et al. (2006).MethodsWe performed Brownian dynamics (BD) simulations of the diffusional association of the wild-type and 38 single or double point mutants of the globular domain of mouse linker histone H1.0 (gH1.0) to a nucleosome. From these simulations, we calculated the bimolecular association rate constant (kon), the Gibbs binding free energy (ΔG) and the dissociation rate constant (koff) related to formation of a diffusional encounter complex between the nucleosome and the gH1.0.ResultsWe used these parameters, after application of a correction factor to account for the effects of the crowded environment of the nucleus, to compute FRAP recovery times and curves that are in good agreement with previously published, experimentally measured FRAP recovery time courses.ConclusionsOur computational analysis suggests that BD simulations can be used to predict the relative effects of single point mutations on FRAP recovery times related to protein binding.General SignificanceBD simulations assist in providing a detailed molecular level interpretation of FRAP data.  相似文献   

9.
10.
Fluorescence recovery after photobleaching (FRAP) is a widely used tool for estimating mobility parameters of fluorescently tagged molecules in cells. Despite the widespread use of confocal laser scanning microscopes (CLSMs) to perform photobleaching experiments, quantitative data analysis has been limited by lack of appropriate practical models. Here, we present a new approximate FRAP model for use on any standard CLSM. The main novelty of the method is that it takes into account diffusion of highly mobile molecules during the bleach phase. In fact, we show that by the time the first postbleach image is acquired in a CLSM a significant fluorescence recovery of fast-moving molecules has already taken place. The model was tested by generating simulated FRAP recovery curves for a wide range of diffusion coefficients and immobile fractions. The method was further validated by an experimental determination of the diffusion coefficient of fluorescent dextrans and green fluorescent protein. The new FRAP method was used to compare the mobility rates of fluorescent dextrans of 20, 40, 70, and 500 kDa in aqueous solution and in the nucleus of living HeLa cells. Diffusion coefficients were lower in the nucleoplasm, particularly for higher molecular weight dextrans. This is most likely caused by a sterical hindrance effect imposed by nuclear components. Decreasing the temperature from 37 to 22 degrees C reduces the dextran diffusion rates by approximately 30% in aqueous solution but has little effect on mobility in the nucleoplasm. This suggests that spatial constraints to diffusion of dextrans inside the nucleus are insensitive to temperature.  相似文献   

11.
12.
Analysis of membrane-localized binding kinetics with FRAP   总被引:1,自引:1,他引:0  
  相似文献   

13.
Fluorescence Recovery After Photobleaching (FRAP) has been a versatile tool to study transport and reaction kinetics in live cells. Since the fluorescence data generated by fluorescence microscopy are in a relative scale, a wide variety of scalings and normalizations are used in quantitative FRAP analysis. Scaling and normalization are often required to account for inherent properties of diffusing biomolecules of interest or photochemical properties of the fluorescent tag such as mobile fraction or photofading during image acquisition. In some cases, scaling and normalization are also used for computational simplicity. However, to our best knowledge, the validity of those various forms of scaling and normalization has not been studied in a rigorous manner. In this study, we investigate the validity of various scalings and normalizations that have appeared in the literature to calculate mobile fractions and correct for photofading and assess their consistency with FRAP equations. As a test case, we consider linear or affine scaling of normal or anomalous diffusion FRAP equations in combination with scaling for immobile fractions. We also consider exponential scaling of either FRAP equations or FRAP data to correct for photofading. Using a combination of theoretical and experimental approaches, we show that compatible scaling schemes should be applied in the correct sequential order; otherwise, erroneous results may be obtained. We propose a hierarchical workflow to carry out FRAP data analysis and discuss the broader implications of our findings for FRAP data analysis using a variety of kinetic models.  相似文献   

14.
Fluorescence recovery after photobleaching (FRAP) using confocal laser scanning microscopes (confocal FRAP) has become a valuable technique for studying the diffusion of biomolecules in cells. However, two-dimensional confocal FRAP sometimes yields results that vary with experimental setups, such as different bleaching protocols and bleaching spot sizes. In addition, when confocal FRAP is used to measure diffusion coefficients (D) for fast diffusing molecules, it often yields D-values that are one or two orders-of-magnitude smaller than that predicted theoretically or measured by alternative methods such as fluorescence correlation spectroscopy. Recently, it was demonstrated that this underestimation of D can be corrected by taking diffusion during photobleaching into consideration. However, there is currently no consensus on confocal FRAP theory, and no efforts have been made to unify theories on conventional and confocal FRAP. To this end, we generalized conventional FRAP theory to incorporate diffusion during photobleaching so that analysis by conventional FRAP theory for a circular region of interest is easily applicable to confocal FRAP. Finally, we demonstrate the accuracy of these new (to our knowledge) formulae by measuring D for soluble enhanced green fluorescent protein in aqueous glycerol solution and in the cytoplasm and nucleus of COS7 cells.  相似文献   

15.
Quantitative measurements of diffusion can provide important information about how proteins and lipids interact with their environment within the cell and the effective size of the diffusing species. Confocal fluorescence recovery after photobleaching (FRAP) is one of the most widely accessible approaches to measure protein and lipid diffusion in living cells. However, straightforward approaches to quantify confocal FRAP measurements in terms of absolute diffusion coefficients are currently lacking. Here, we report a simplified equation that can be used to extract diffusion coefficients from confocal FRAP data using the half time of recovery and effective bleach radius for a circular bleach region, and validate this equation for a series of fluorescently labeled soluble and membrane‐bound proteins and lipids. We show that using this approach, diffusion coefficients ranging over three orders of magnitude can be obtained from confocal FRAP measurements performed under standard imaging conditions, highlighting its broad applicability.  相似文献   

16.
Fluorescence recovery after photobleaching (FRAP) is an important tool used by cell biologists to study the diffusion and binding kinetics of vesicles, proteins, and other molecules in the cytoplasm, nucleus, or cell membrane. Although many FRAP models have been developed over the past decades, the influence of the complex boundaries of 3D cellular geometries on the recovery curves, in conjunction with regions of interest and optical effects (imaging, photobleaching, photoswitching, and scanning), has not been well studied. Here, we developed a 3D computational model of the FRAP process that incorporates particle diffusion, cell boundary effects, and the optical properties of the scanning confocal microscope, and validated this model using the tip-growing cells of Physcomitrella patens. We then show how these cell boundary and optical effects confound the interpretation of FRAP recovery curves, including the number of dynamic states of a given fluorophore, in a wide range of cellular geometries—both in two and three dimensions—namely nuclei, filopodia, and lamellipodia of mammalian cells, and in cell types such as the budding yeast, Saccharomyces pombe, and tip-growing plant cells. We explored the performance of existing analytical and algorithmic FRAP models in these various cellular geometries, and determined that the VCell VirtualFRAP tool provides the best accuracy to measure diffusion coefficients. Our computational model is not limited only to these cells types, but can easily be extended to other cellular geometries via the graphical Java-based application we also provide. This particle-based simulation—called the Digital Confocal Microscopy Suite or DCMS—can also perform fluorescence dynamics assays, such as number and brightness, fluorescence correlation spectroscopy, and raster image correlation spectroscopy, and could help shape the way these techniques are interpreted.  相似文献   

17.
Fluorescence recovery after photobleaching (FRAP) measurements offer an important tool towards analysing diffusion processes within living biological cells. A model is presented that aims to provide a rigorous theoretical framework from which binding information of proteins from FRAP data can be extracted. A single binding reaction is considered and a set of mathematical equations is introduced that incorporates the concentration of free proteins, vacant binding sites and bound complexes in addition to the on- and off-rates of the proteins. To allow a realistic FRAP model, characteristics of the instruments used to perform FRAP measurements are included in the equation. The proposed model has been designed to be applied to biological samples with a confocal scanning laser microscope (CSLM) equipped with the feature to bleach regions characterised by a radially Gaussian distributed profile. Binding information emerges from FRAP simulations considering the diffusion coefficient, radial extent of the bleached volume and bleach constant as parameters derived from experimental data. The proposed model leads to FRAP curves that depend on the on- and off-rates. Analytical expressions are used to define the boundaries of on- and off-rate parameter space in simplified cases when molecules can move on an infinite domain. A similar approach is ensued when movement is restricted in a compartment with a finite size. The theoretical model can be used in conjunction to experimental data acquired by CSLM to investigate the biophysical properties of proteins in living cells.  相似文献   

18.
We present a truly quantitative fluorescence recovery after photobleaching (FRAP) model for use with the confocal laser scanning microscope based on the photobleaching of a long line segment. The line FRAP method is developed to complement the disk FRAP method reported before. Although being more subject to the influence of noise, the line FRAP model has the advantage of a smaller bleach region, thus allowing for faster and more localized measurements of the diffusion coefficient and mobile fraction. The line FRAP model is also very well suited to examine directly the influence of the bleaching power on the effective bleaching resolution. We present the outline of the mathematical derivation, leading to a final analytical expression to calculate the fluorescence recovery. We examine the influence of the confocal aperture and the bleaching power on the measured diffusion coefficient to find the optimal experimental conditions for the line FRAP method. This will be done for R-phycoerythrin and FITC-dextrans of various molecular weights. The ability of the line FRAP method to measure correctly absolute diffusion coefficients in three-dimensional samples will be evaluated as well. Finally we show the application of the method to the simultaneous measurement of free green fluorescent protein diffusion in the cytoplasm and nucleus of living A549 cells.  相似文献   

19.
20.
Understanding of cell regulation is limited by our inability to measure molecular binding rates for proteins within the structural context of living cells, and many systems biology models are hindered because they use values obtained with molecules binding in solution. Here, we present a kinetic analysis of GFP-histone H1 binding to chromatin within nuclei of living cells that allows both the binding rate constant k(ON) and dissociation rate constant k(OFF) to be determined based on data obtained from fluorescence recovery after photobleaching (FRAP) analysis. This is accomplished by measuring the ratio of bound to free concentration of protein at steady state, and identifying the rate-determining step during FRAP recovery experimentally, combined with mathematical modeling. We report k(OFF) = 0.0131/s and k(ON) = 0.14/s for histone H1.1 binding to chromatin. This work brings clarity to the interpretation of FRAP experiments and provides a way to determine binding kinetics for nuclear proteins and other cellular molecules that interact with insoluble scaffolds within living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号