共查询到20条相似文献,搜索用时 0 毫秒
1.
Rong An Gabriela da Silva Xavier Francesca Semplici Saharnaz Vakhshouri Jared Rutter Flavio Meggio Guy A. Rutter 《Biochemical and biophysical research communications》2010,399(2):155-161
Pancreatic and duodenal homeobox 1 (PDX1) regulates pancreatic development and mature β-cell function. We demonstrate by mass spectrometry that serine residue at position 269 in the C-terminal domain of PDX1 is phosphorylated in β-cells. Besides we show that the degree of phosphorylation, assessed with a phospho-Ser-269-specific antibody, is decreased by elevated glucose concentrations in both MIN6 β-cells and primary mouse pancreatic islets. Homeodomain interacting protein kinase 2 (HIPK2) phosphorylates PDX1 in vitro; phosphate incorporation substantially decreases in PDX1 S269A mutant. Silencing of HIPK2 led to a 51 ± 0.2% decrease in Ser-269 phosphorylation in MIN6 β-cells. Mutation of Ser-269 to phosphomimetic residue glutamic acid (S269E) or de-phosphomimetic residue alanine (S269A) exerted no effect on PDX1 half-life. Instead, PDX1 S269E mutant displayed abnormal changes in subnuclear localization in response to high glucose. Our results suggest that HIPK2-mediated phosphorylation of PDX1 at Ser-269 might be a regulatory mechanism connecting signals generated by changes in extracellular glucose concentration to downstream effectors via changes in subnuclear localization of PDX1, thereby influencing islet cell differentiation and function. 相似文献
2.
3.
Pancreas: how to get there from the gut? 总被引:5,自引:0,他引:5
Edlund H 《Current opinion in cell biology》1999,11(6):663-668
4.
5.
6.
FgfrL1, which interacts with Fgf ligands and heparin, is a member of the fibroblast growth factor receptor (Fgfr) family. FgfrL1-deficient mice show two significant alterations when compared to wildtype mice: They die at birth due to a malformed diaphragm and they lack metanephric kidneys. Utilizing gene arrays, qPCR and in situ hybridization we show here that the diaphragm of FgfrL1 knockout animals lacks any slow muscle fibers at E18.5 as indicated by the absence of slow fiber markers Myh7, Myl2 and Myl3. Similar lesions are also found in other skeletal muscles that contain a high proportion of slow fibers at birth, such as the extraocular muscles. In contrast to the slow fibers, fast fibers do not appear to be affected as shown by expression of fast fiber markers Myh3, Myh8, Myl1 and MylPF. At early developmental stages (E10.5, E15.5), FgfrL1-deficient animals express slow fiber genes at normal levels. The loss of slow fibers cannot be attributed to the lack of kidneys, since Wnt4 knockout mice, which also lack metanephric kidneys, show normal expression of Myh7, Myl2 and Myl3. Thus, FgfrL1 is specifically required for embryonic development of slow muscle fibers. 相似文献
7.
8.
9.
The CULLIN family of E3 ubiquitin ligases are important regulators of plant development and function. A newly identified class of CULLIN4-RING-E3 ligases (CRL4s) interacts with substrate receptors referred to as DDB1-CUL4 ASSOCIATED FACTORS (DCAFs) via a DDB1 linker protein. We have previously reported that the WD40 protein WDR55 interacts with DDB1A and is thus a putative DCAF. Mutants of WDR55 are embryo lethal, suggesting that a DDB1WDR55 complex could regulate embryo and endosperm development. Here we report that a weak allele homozygous for wdr55 display pleiotropic phenotypes in the seedling and adult stages, suggesting a novel regulatory role for WDR55 in vegetative development. 相似文献
10.
11.
12.
13.
Sarah L. Bryant Jeffrey C. Francis Isabel B. Lokody Hong Wang Gail P. Risbridger Kate L. Loveland Amanda Swain 《Developmental biology》2014
The mammalian urogenital sinus (UGS) develops in a sex specific manner, giving rise to the prostate in the male and the sinus vagina in the embryonic female. Androgens, produced by the embryonic testis, have been shown to be crucial to this process. In this study we show that retinoic acid signaling is required for the initial stages of bud development from the male UGS. Enzymes involved in retinoic acid synthesis are expressed in the UGS mesenchyme in a sex specific manner and addition of ligand to female tissue is able to induce prostate-like bud formation in the absence of androgens, albeit at reduced potency. Functional studies in mouse organ cultures that faithfully reproduce the initiation of prostate development indicate that one of the roles of retinoic acid signaling in the male is to inhibit the expression of Inhba, which encodes the βA subunit of Activin, in the UGS mesenchyme. Through in vivo genetic analysis and culture studies we show that inhibition of Activin signaling in the female UGS leads to a similar phenotype to that of retinoic acid treatment, namely bud formation in the absence of androgens. Our data also reveals that both androgens and retinoic acid have extra independent roles to that of repressing Activin signaling in the development of the prostate during fetal stages. This study identifies a novel role for retinoic acid as a mesenchymal factor that acts together with androgens to determine the position and initiation of bud development in the male UGS epithelia. 相似文献
14.
The F-box protein Fbw7 (also known as Fbxw7, hCdc4 and Sel-10) functions as a substrate recognition component of a SCF-type E3 ubiquitin ligase. SCF(Fbw7) facilitates polyubiquitination and subsequent degradation of various proteins such as Notch, cyclin E, c-Myc and c-Jun. Fbw7 is highly expressed in the nervous system and controls neural stem cell differentiation and apoptosis via Notch and c-Jun during embryonic development (Hoeck et al., 2010). Fbw7 deletion in the neural lineage is perinatal lethal and thus prohibits studying the role of Fbw7 in the adult nervous system. fbw7 mRNA is highly expressed in the postnatal brain and to gain insights into the function of Fbw7 in postnatal neurogenesis we analysed Fbw7 function in the cerebellum. We generated conditional Fbw7-knockout mice (fbw7?Cb) by inactivating Fbw7 specifically in the cerebellar anlage. This resulted in decreased cerebellar size, reduced Purkinje cell number and defects in axonal arborisation. Moreover, Fbw7-deficient cerebella showed supranumeral fissures and aberrant progenitor cell migration. Protein levels of the Fbw7 substrates Notch1 and N-terminally phosphorylated c-Jun were upregulated in fbw7?Cb mice. Concomitant deletion of c-Jun, and also the junAA knock-in mutation which specifically abrogates c-Jun N-terminal phosphorylation, rescued Purkinje cell numbers and arborisation in the fbw7?Cb background. Taken together these data demonstrate that Fbw7 is essential during cerebellar development, and identify N-terminally phosphorylated c-Jun as an important substrate of SCF(Fbw7) during neurogenesis. 相似文献
15.
16.
Jarid2/Jumonji critically regulates developmental processes including cardiovascular development. Jarid2 knock-out mice exhibit cardiac defects including hypertrabeculation with noncompaction of the ventricular wall. However, molecular mechanisms underlying Jarid2-mediated cardiac development remain unknown. To determine the cardiac lineage-specific roles of Jarid2, we generated myocardial, epicardial, cardiac neural crest, or endothelial conditional Jarid2 knock-out mice using Cre-loxP technology. Only mice with an endothelial deletion of Jarid2 recapitulate phenotypic defects observed in whole body mutants including hypertrabeculation and noncompaction of the ventricle. To identify potential targets of Jarid2, combinatorial approaches using microarray and candidate gene analyses were employed on Jarid2 knock-out embryonic hearts. Whole body or endothelial deletion of Jarid2 leads to increased endocardial Notch1 expression in the developing ventricle, resulting in increased Notch1-dependent signaling to the adjacent myocardium. Using quantitative chromatin immunoprecipitation analysis, Jarid2 was found to occupy a specific region on the endogenous Notch1 locus. We propose that failure to properly regulate Notch signaling in Jarid2 mutants likely leads to the defects in the developing ventricular chamber. The identification of Jarid2 as a potential regulator of Notch1 signaling has broad implications for many cellular processes including development, stem cell maintenance, and tumor formation. 相似文献
17.
The Drosophila gene shuttle craft (stc) is expressed zygotically in the embryonic central nervous system (CNS) where it is required to maintain the proper morphology of motoneuronal axon nerve routes following their migration from the ventral cord. Here, we report that a prominent maternal source of STC protein is also present throughout both oogenesis and embryogenesis. To determine whether this maternal component is required in the ovary and/or embryo, we used the Drosophila autosomal dominant female sterile technique to generate germ-line clones that lacked the stc maternal function. Our results demonstrate that a maternally derived source of STC protein is required during embryogenesis but not oogenesis. In contrast to the zygotic phenotype, the primary defect in embryos derived from stc germ-line clones affects segmentation by causing disruptions and deletions in distinct thoracic (T1–T3) and abdominal (A4–A8) segments. These localized defects are responsible for additional phenotypes observed later in development which include gaps in the ventral nerve cord and deletions of denticle belts in the cuticle. An additional phenotype occurring in all other neuromeric segments consists of the misguided migration of motoneuronal axons as they project out of the ventral nerve cord. Thus, the stc zygotic function is required later in development and cannot correct the segmentation and subsequent CNS abnormalities associated with loss of its earlier acting maternally derived activity. Received: 12 March 1998 / Accepted: 9 April 1998 相似文献
18.
19.
Di Rosa P Villaescusa JC Longobardi E Iotti G Ferretti E Diaz VM Miccio A Ferrari G Blasi F 《Developmental biology》2007,311(2):324-334
Most of the hypomorphic Prep1i/i embryos (expressing 3-10% of the Prep1 protein), die between E17.5 and P0, with profound anemia, eye malformations and angiogenic anomalies [Ferretti, E., Villaescusa, J.C., Di Rosa, P., Fernandez-Diaz, L.-C., Longobardi, E., Mazzieri, R., Miccio, A., Micali, N., Selleri, L., Ferrari G., Blasi, F. (2006). Hypomorphic mutation of the TALE gene Prep1 (pKnox1) causes a major reduction of Pbx and Meis proteins and a pleiotropic embryonic phenotype. Mol. Cell. Biol. 26, 5650-5662]. We now report on the hematopoietic phenotype of these embryos. Prep1i/i fetal livers (FL) are hypoplastic, produce less common myeloid progenitors colonies (CFU-GEMM) in cytokine-supplemented methylcellulose and have an increased number of B-cells precursors that differentiate poorly. Prep1i/i FL is able to protect lethally irradiated mice only at high cell doses but the few protected mice show major anomalies in all hematopoietic lineages in both bone marrow (BM) and peripheral organs. Prep1i/i FL cells compete inefficiently with wild type bone marrow in competitive repopulation experiments, suggesting that the major defect lies in long-term repopulating hematopoietic stem cells (LTR-HSC). Indeed, wt embryonic expression of Prep1 in the aorta-gonad-mesonephros (AGM) region, fetal liver (FL), cKit+Sca1+Lin−AA4.1+ (KSLA) cells and B-lymphocytes precursors agrees with the observed phenotype. We therefore conclude that Prep1 is required for a correct and complete hematopoiesis. 相似文献
20.
Hughes I Blasiole B Huss D Warchol ME Rath NP Hurle B Ignatova E Dickman JD Thalmann R Levenson R Ornitz DM 《Developmental biology》2004,276(2):391-402
Orientation with respect to gravity is essential for the survival of complex organisms. The gravity receptor is one of the phylogenetically oldest sensory systems, and special adaptations that enhance sensitivity to gravity are highly conserved. The fish inner ear contains three large extracellular biomineral particles, otoliths, which have evolved to transduce the force of gravity into neuronal signals. Mammalian ears contain thousands of small particles called otoconia that serve a similar function. Loss or displacement of these structures can be lethal for fish and is responsible for benign paroxysmal positional vertigo (BPPV) in humans. The distinct morphologies of otoconial particles and otoliths suggest divergent developmental mechanisms. Mutations in a novel gene Otopetrin 1 (Otop1), encoding multi-transmembrane domain protein, result in nonsyndromic otoconial agenesis and a severe balance disorder in mice. Here we show that the zebrafish, Danio rerio, contains a highly conserved gene, otop1, that is essential for otolith formation. Morpholino-mediated knockdown of zebrafish Otop1 leads to otolith agenesis without affecting the sensory epithelium or other structures within the inner ear. Despite lack of otoliths in early development, otolith formation partially recovers in some fish after 2 days. However, the otoliths are malformed, misplaced, lack an organic matrix, and often consist of inorganic calcite crystals. These studies demonstrate that Otop1 has an essential and conserved role in the timing of formation and the size and shape of the developing otolith. 相似文献