首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The pancreatic and duodenal homeobox gene 1 (Pdx1) has multiple roles in the specification and development of foregut endoderm-derived tissues. We report the characterization of a mouse line in which the gene encoding green fluorescent protein (GFP) has been targeted to the Pdx1 locus, allowing the visualization of Pdx1 expressing cells. Analysis of GFP expression during development showed that the reporter faithfully reproduced the known expression pattern of Pdx1. We demonstrate the utility of this mouse line for the isolation of Pdx1(+) cells by fluorescence-activated cell sorting and for the real-time observation of Pdx1(+) cells in an ex vivo embryonic pancreas culture system. This mouse model should prove useful for the study of pancreas development and regeneration.  相似文献   

3.
4.
5.
6.
7.
Nkx family members are essential for normal development of many different tissues such as the heart, lungs, thyroid, prostate, and CNS. Here, we describe the endodermal expression pattern of three Nkx6 family genes of which two shows conserved expression in the early pancreatic epithelium. In chicken, Nkx6.1 expression is not restricted to the presumptive pancreatic area but is more broadly expressed in the endoderm. In mice, expression of Nkx6.1 is restricted to the pancreatic epithelium. In both mice and chicken, Nkx6.2 and Pdx1 are expressed in very similar domains, identifying Nkx6.2 as a novel marker of pancreas endoderm. Additionally, our results show that Nkx6.3 is expressed transiently in pancreatic endoderm in chicken but not mouse embryos. At later stages, Nkx6.3 is found in the caudal stomach and rostral duodenum in both species. Finally, we demonstrate that Pdx1 is required for Nkx6.1 but not Nkx6.2 expression in mice and that ectopic Pdx1 can induce Nkx6.1 but not Nkx6.2 or Nkx6.3 expression in anterior chicken endoderm. These results demonstrate that Nkx6.1 lies downstream of Pdx1 in a genetic pathway and that Pdx1 is required and sufficient for Nkx6.1 expression in the early foregut endoderm.  相似文献   

8.
9.
The location and lineage of cells that give rise to endocrine islets during embryogenesis has not been established nor has the origin or identity of adult islet stem cells. We have employed an inducible Cre-ER(TM)-LoxP system to indelibly mark the progeny of cells expressing either Ngn3 or Pdx1 at different stages of development. The results provide direct evidence that NGN3+ cells are islet progenitors during embryogenesis and in adult mice. In addition, we find that cells expressing Pdx1 give rise to all three types of pancreatic tissue: exocrine, endocrine and duct. Furthermore, exocrine and endocrine cells are derived from Pdx1-expressing progenitors throughout embryogenesis. By contrast, the pancreatic duct arises from PDX1+ progenitors that are set aside around embryonic day 10.5 (E9.5-E11.5). These findings suggest that lineages for exocrine, endocrine islet and duct progenitors are committed at mid-gestation.  相似文献   

10.
11.
12.
FGFR1-IIIb is a putative marker of pancreatic progenitor cells   总被引:1,自引:0,他引:1  
The pancreas develops from buds that derive from the endodermal epithelium of the digestive tract. The progenitor cells that will give rise to the mature pancreatic cells reside within this epithelium. However, their exact identity remains unknown. In the present study, we searched for genes expressed by pancreatic progenitor cells. We focused our search on receptor tyrosine kinases. We found that fibroblast growth factor-IIIb (FGFR1-IIIb) expression is high in pancreatic epithelium enriched in progenitor cells. We next investigated FGFR1-IIIb expression throughout pancreatic development. At early stages of pancreas development, FGFR1-IIIb is expressed by pancreatic epithelial cells that resemble undifferentiated cells, while at later stages of development, FGFR1-IIIb expression decreases, concomitant with the expected decrease in the number of progenitor cells.  相似文献   

13.
14.
15.
16.
To investigate the precise role of Notch/Rbp-j signaling in the pancreas, we inactivated Rbp-j by crossing Rbp-j floxed mice with Pdx.cre or Rip.cre transgenic mice. The loss of Rbp-j at the initial stage of pancreatic development induced accelerated alpha and PP cell differentiation and a concomitant decrease in the number of Neurogenin3 (Ngn3)-positive cells at E11.5. Then at E15, elongated tubular structures expressing ductal cell markers were evident; however, differentiation of acinar and all types of endocrine cells were reduced. During later embryonic stages, compensatory acinar cell differentiation was observed. The resultant mice exhibited insulin-deficient diabetes with both endocrine and exocrine pancreatic hypoplasia. In contrast, the loss of Rbp-j specifically in beta cells did not affect beta cell number and function. Thus, our analyses indicate that Notch/Rbp-j signaling prevents premature differentiation of pancreatic progenitor cells into endocrine and ductal cells during early development of the pancreas.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号