首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plant cells regulate many cellular processes controlling the half-life of critical proteins through ubiquitination. Previously, we characterized two interacting RING-type E3 ubiquitin ligases of Triticum durum, TdRF1 and WVIP2. We revealed their role in tolerance to dehydration, and existing knowledge about their partners also indicated their involvement in the regulation of some aspects of plant development. Here we located WVIP2 in the regulation of the ABA signaling, based on sequence similarities. Further we acquired general evidence about the versatility of ubiquitination in plant cells. A protein can be target of different E3 ligases for a perfect tuning of its abundance as well as the same E3 ligase can ubiquitinate different and unrelated proteins, thus representing a cross-connections between different signaling pathways for a global coordination of cellular processes.  相似文献   

2.
ISG15 is a ubiquitin-like protein that is upregulated on treatment with interferon. ISG15 is considered to be covalently conjugated to cellular proteins through a sequential reaction similar to that of the ubiquitin conjugation system consisting of E1/E2/E3 enzymes: UBE1L and UbcH8 have been reported to function as E1 and E2 enzymes, respectively, for ISG15 conjugation. Several cellular proteins have been identified as targets for ISG15 conjugation, but the roles of ISG15 conjugation remain unclear. In this study, we found that UbcH6 and UbcH8, E2 enzymes for ubiquitin conjugation, are covalently modified by ISG15. We also found that UbcH6 is capable of forming a thioester intermediate with ISG15 through Cys131. We determined that the Lys136 residue near the catalytic site Cys131 is the ISG15 conjugation site in UbcH6. We isolated ISG15-modified and unmodified UbcH6 proteins, and analyzed their abilities to form thioester intermediates with ubiquitin. A ubiquitin thioester intermediate was detected in the case of unmodified UbcH6, but not in that of ISG15-modified UbcH6, strongly suggesting that ISG15 conjugation to UbcH6 suppresses its ubiquitin E2 enzyme activity. Thus, we provide evidence for a link between the ubiquitin conjugation system and the ISG15 conjugation system.  相似文献   

3.
WWP2 is an E3 ubiquitin ligase for PTEN   总被引:1,自引:0,他引:1  
  相似文献   

4.
BACKGROUND: Molecular chaperones recognize nonnative proteins and orchestrate cellular folding processes in conjunction with regulatory cofactors. However, not every attempt to fold a protein is successful, and misfolded proteins can be directed to the cellular degradation machinery for destruction. Molecular mechanisms underlying the cooperation of molecular chaperones with the degradation machinery remain largely enigmatic so far. RESULTS: By characterizing the chaperone cofactors BAG-1 and CHIP, we gained insight into the cooperation of the molecular chaperones Hsc70 and Hsp70 with the ubiquitin/proteasome system, a major system for protein degradation in eukaryotic cells. The cofactor CHIP acts as a ubiquitin ligase in the ubiquitination of chaperone substrates such as the raf-1 protein kinase and the glucocorticoid hormone receptor. During targeting of signaling molecules to the proteasome, CHIP may cooperate with BAG-1, a ubiquitin domain protein previously shown to act as a coupling factor between Hsc/Hsp70 and the proteasome. BAG-1 directly interacts with CHIP; it accepts substrates from Hsc/Hsp70 and presents associated proteins to the CHIP ubiquitin conjugation machinery. Consequently, BAG-1 promotes CHIP-induced degradation of the glucocorticoid hormone receptor in vivo. CONCLUSIONS: The ubiquitin domain protein BAG-1 and the CHIP ubiquitin ligase can cooperate to shift the activity of the Hsc/Hsp70 chaperone system from protein folding to degradation. The chaperone cofactors thus act as key regulators to influence protein quality control.  相似文献   

5.
MAP kinase-interacting kinase-2 (Mnk2) is one of the downstream kinases activated by MAP kinases. It phosphorylates the eukaryotic initiation factor 4E (elF4E), although the role of elF4E phosphorylation and the role of Mnk2 in the process of protein translation are not well understood. Except for elF4E, other physiological substrates of Mnk2 are still unidentified. To look for these unidentified substrates and to reveal the physiological function of Mnk2, we performed a yeast two-hybrid screening with Mnk2 as the bait. The results demonstrated Mnk2 could interact with VHL (von Hippel-Lindau tumor suppressor), Rbx1 (ring-box 1) and Cul2 (Cullin2) proteins in yeast cells. Furthermore, we validated the interaction between Mnk2 and VHL proteins in mammalian cells by co-immunoprecipitation analysis. Because the three proteins VHL, Rbx1 and Cul2 are all components of the CBCVHL ubiquitin ligase E3 complex, it has been shown that Mnk2 can interact with CBCVHL complex, and is probably one of the new substrates of the CBCVHL complex. Furthermore, during the interaction of Mnk2 with von Hippel-Lindau (VHL) tumor suppressor-binding protein 1 (VBP1), it appears that Mnk2 also joins to modulate cell shape as VBP1 plays an important role in the process of the maturation of the cytoskeleton and in the process of morphogenesis.  相似文献   

6.
7.
The transfer of ubiquitin (Ub) to a substrate protein requires a cascade of E1 activating, E2 conjugating, and E3 ligating enzymes. E3 Ub ligases containing U-box and RING domains bind both E2~Ub conjugates and substrates to facilitate transfer of the Ub molecule. Although the overall mode of action of E3 ligases is well established, many of the mechanistic details that determine the outcome of ubiquitination are poorly understood. CHIP (carboxyl terminus of Hsc70-interacting protein) is a U-box E3 ligase that serves as a co-chaperone to heat shock proteins and is critical for the regulation of unfolded proteins in the cytosol. We have performed a systematic analysis of the interactions of CHIP with E2 conjugating enzymes and found that only a subset bind and function. Moreover, some E2 enzymes function in pairs to create products that neither create individually. Characterization of the products of these reactions showed that different E2 enzymes produce different ubiquitination products, i.e. that E2 determines the outcome of Ub transfer. Site-directed mutagenesis on the E2 enzymes Ube2D1 and Ube2L3 (UbcH5a and UbcH7) established that an SPA motif in loop 7 of E2 is required for binding to CHIP but is not sufficient for activation of the E2~Ub conjugate and consequent ubiquitination activity. These data support the proposal that the E2 SPA motif provides specificity for binding to CHIP, whereas activation of the E2~Ub conjugate is derived from other molecular determinants.  相似文献   

8.
UHRF2, ubiquitin-like with PHD and ring finger domains 2, is a nuclear E3 ubiquitin ligase, which is involved in cell cycle and epigenetic regulation. UHRF2 interacts with multiple cell cycle proteins, including cyclins (A2, B1, D1, and E1), CDK2, and pRb; moreover, UHRF2 could ubiquitinate cyclin D1 and cyclin E1. Also, UHRF2 has been shown to be implicated in epigenetic regulation by associating with DNMTs, G9a, HDAC1, H3K9me2/3 and hemi-methylated DNA. We found that UHRF2 associates with tumor suppressor protein p53, and p53 is ubiquitinated by UHRF2 in vivo and in vitro. Given that both UHRF2 and p53 are involved in cell cycle regulation, this study may suggest a novel signaling pathway on cell proliferation.  相似文献   

9.
E3 ubiquitin (Ub) ligases play diverse roles in cellular regulation in eukaryotes. Three homologous AtRmas (AtRma1, AtRma2, and AtRma3) were recently identified as ER-localized Arabidopsis homologs of human RING membrane-anchor E3 Ub ligase. Here, auxin binding protein 1 (ABP1), one of the auxin receptors in Arabidopsis, was identified as a potential substrate of AtRma2 through a yeast two-hybrid assay. An in vitro pull-down assay confirmed the interaction of full-length AtRma2 with ABP1. AtRma2 was transiently expressed in tobacco (Nicotiana benthamiana) plants through an Agrobacterium-mediated infiltration method and bound ABP1 in vivo. In vitro ubiquitination assays revealed that bacterially-expressed AtRma2 ubiquitinated ABP1. ABP1 was poly-ubiquitinated in tobacco cells and its stability was significantly increased in the presence of MG132, a 26S proteasome inhibitor. This suggests that ABP1 is controlled by the Ub/26S proteasome system. Therefore, AtRma2 is likely involved in the cellular regulation of ABP1 expression levels.  相似文献   

10.
MAP kinase-interacting kinase-2 (Mnk2) is one of the downstream kinases activated by MAP kinases. It phosphorylates the eukaryotic initiation factor 4E (elF4E), although the role of elF4E phosphorylation and the role of Mnk2 in the process of protein translation are not well understood. Except for elF4E, other physiological substrates of Mnk2 are still unidentified. To look for these unidentified substrates and to reveal the physiological function of Mnk2, we performed a yeast two-hybrid screening with Mnk2 as the bait. The results demonstrated Mnk2 could interact with VHL (von Hip-pel-Lindau tumor suppressor), Rbx1 (ring-box 1) and Cul2 (Cullin2) proteins in yeast cells. Furthermore, we validated the interaction between Mnk2 and VHL proteins in mammalian cells by co-immunoprecipitation analysis. Because the three proteins VHL, Rbx1 and Cul2 are all components of the CBCVHL ubiquitin ligase E3 complex, it has been shown that Mnk2 can interact with CBCVHL complex, and is probably one of the new substrates of the CBCVHL complex. Furthermore, during the interaction of Mnk2 with von Hippel-Lindau (VHL) tumor suppressor- binding protein 1 (VBP1), it appears that Mnk2 also joins to modulate cell shape as VBP1 plays an important role in the process of the maturation of the cytoskeleton and in the process of morphogenesis.  相似文献   

11.
Protein oxidation is a natural consequence of aerobic metabolism in cells. Oxidative modification of amino acid residues of proteins causes to lose activity or function of proteins. Organisms have thus developed pathways to remove oxidized proteins by rapid protein degradation. These pathways are important components in cellular quality control mechanisms. It has been suggested that oxidized proteins are degraded by the proteasome. However, whether ubiquitylation is necessary for the degradation of oxidized proteins remains a controversial issue. We have recently identified HOIL-1 (heme-oxidized IRP2 ubiquitin ligase-1) as an E3 ligase that recognizes a protein that has been oxidized by iron. This review describes the recent progress made in understanding the ubiquitin-proteolytic pathway and the regulation of iron metabolism. The process involved in eliminating oxidized proteins and the possible roles that HOIL-1 ubiquitin ligase may play in these processes are discussed.  相似文献   

12.
Apoptotic cell death and survival is controlled by pro- and antiapoptotic proteins. Because these proteins act on each other, cell fate is dictated by the relative activity of pro- versus antiapoptotic proteins. Here we report that BRUCE, a conserved 528 kDa peripheral membrane protein of the trans-Golgi network, protects cells against apoptosis and functions as an inhibitor of apoptosis (IAP). By using wild-type and mutant forms we show that BRUCE inhibits caspase activity and apoptosis depending on its BIR domain. Upon apoptosis induction, BRUCE is antagonized by three mechanisms: first, through binding to Smac; second, by the protease HtrA2; and third, by caspase-mediated cleavage. In addition to its IAP activity BRUCE has the distinctive property of functioning as a chimeric E2/E3 ubiquitin ligase with Smac being a substrate. Our work suggests that, owing to its two activities and its localization, BRUCE may function as a specialized regulator of cell death pathways.  相似文献   

13.
Angelman syndrome is a severe neurological disorder characterized by mental retardation, absent speech, ataxia, seizures, and hyperactivity. The gene affected in this disorder is UBE3A, the gene encoding the E6-associated protein (E6AP) ubiquitin-protein ligase. Most patients have chromosomal deletions that remove the entire maternal allele of UBE3A. However, a small subset of patients have E6AP point mutations that result in single amino acid changes or short in-frame deletions that still allow translation of a full-length protein. By studying these point mutations in E6AP, we found a strong correlation between Angelman-associated mutations and a loss of E3 ubiquitin ligase activity. Interestingly the point mutations affect E6AP activity in different ways. Some mutant proteins cannot form thiol ester intermediates with ubiquitin, others retain the thiol ester formation activity but cannot efficiently transfer ubiquitin to a substrate, and still others are unstable in cells. Our results suggest that the loss of E6AP catalytic activity and likely the improper regulation of E6AP substrate(s) are important in the development of Angelman syndrome.  相似文献   

14.
Signal transducing adaptor protein-2 (STAP-2) is a recently identified adaptor protein that contains pleckstrin and Src homology 2 (SH2)-like domains as well as a YXXQ motif in its C-terminal region. Our previous study in T cells demonstrated that STAP-2 influences FAK protein levels through recruitment of E3 ubiquitin ligase, Cbl, to FAK. In the present study, we found that Cbl directly controls the protein levels and activity of STAP-2. STAP-2 physically interacted with Cbl through its PH and SH2-like domains. Small-interfering RNA-mediated reduction of endogenous Cbl restored STAP-2 protein levels. In contrast, over-expression of Cbl induced STAP-2 degradation. Importantly, Cbl-mediated regulation of STAP-2 protein levels affected Brk/STAP-2-induced STAT3 activation. These results indicate that Cbl regulates STAP-2 protein levels and Brk/STAP-2-mediated STAT3 activation.  相似文献   

15.
Chaperone functions of the E3 ubiquitin ligase CHIP   总被引:3,自引:0,他引:3  
The carboxyl terminus of the Hsc70-interacting protein (CHIP) is an Hsp70 co-chaperone as well as an E3 ubiquitin ligase that protects cells from proteotoxic stress. The abilities of CHIP to interact with Hsp70 and function as a ubiquitin ligase place CHIP at a pivotal position in the protein quality control system, where its entrance into Hsp70-substrate complexes partitions nonnative proteins toward degradation. However, the manner by which Hsp70 substrates are selected for ubiquitination by CHIP is not well understood. We discovered that CHIP possesses an intrinsic chaperone activity that enables it to selectively recognize and bind nonnative proteins. Interestingly, the chaperone function of CHIP is temperature-sensitive and is dramatically enhanced by heat stress. The ability of CHIP to recognize nonnative protein structure may aid in selection of slow folding or misfolded polypeptides for ubiquitination.  相似文献   

16.
RING E3 ligases are proteins that must selectively recruit an E2-conjugating enzyme and facilitate ubiquitin transfer to a substrate. It is not clear how a RING E3 ligase differentiates a naked E2 enzyme from the E2∼ubiquitin-conjugated form or how this is altered upon ubiquitin transfer. RING-box protein 1 (Rbx1/ROC1) is a key protein found in the Skp1/Cullin-1/F-box (SCF) E3 ubiquitin ligase complex that functions with the E2 ubiquitin conjugating enzyme CDC34. The solution structure of Rbx1/ROC1 revealed a globular RING domain (residues 40–108) stabilized by three structural zinc ions (root mean square deviation 0.30 ± 0.04 Å) along with a disordered N terminus (residues 12–39). Titration data showed that Rbx1/ROC1 preferentially recruits CDC34 in its ubiquitin-conjugated form and favors this interaction by 50-fold compared with unconjugated CDC34. Furthermore, NMR and biochemical assays identified residues in helix α2 of Rbx1/ROC1 that are essential for binding and activating CDC34∼ubiquitin for ubiquitylation. Taken together, this work provides the first direct structural and biochemical evidence showing that polyubiquitylation by the RING E3 ligase Rbx1/ROC1 requires the preferential recruitment of an E2∼ubiquitin complex and subsequent release of the unconjugated E2 protein upon ubiquitin transfer to a substrate or ubiquitin chain.  相似文献   

17.
18.
Heat induced differentiation of mouse embryonal carcinoma cells PCC4 has been reported earlier. We have further characterized the phenotype of the differentiated cells and by DD-RT-PCR identified several partial cDNAs that are differentially expressed during differentiation. Nucleotide homology search revealed that the genes corresponding to some of the up-regulated partial cDNAs are indeed part of differentiation pathway. 5′ extension of an EST that has homology to one of the partial cDNAs led to the identification of mouse cullin4B. Cullin4B is coded by a separate gene and has a unique and longer amino-terminal end with a putative nuclear localization signal sequence (NLS). We have cloned, expressed and raised antibodies against the amino and carboxy-terminal halves of cullin4B. Immuno staining of differentiated PCC4 cells with N-terminal Cul4B antibody showed enhanced expression of Cul4B and its translocation into the nucleus upon differentiation. Transient transfection of a chimeric gene encoding the N-terminal part of Cul4B fused to green fluorescent protein into PCC4 cells revealed that the protein was localized in the nucleus confirming the functional significance of the putative NLS. Since cullins are involved in recognition of specific proteins for degradation, based on the evidence presented here, we hypothesize that cullin4B is probably involved in differentiation specific degradation/ modification of nuclear proteins.  相似文献   

19.
Myosin phosphatase target subunit 1 (MYPT1), together with catalytic subunit of type1 δ isoform (PP1cδ) and a small 20-kDa regulatory unit (M20), form a heterotrimeric holoenzyme, myosin phosphatase (MP), which is responsible for regulating the extent of myosin light chain phosphorylation. Here we report the identification and characterization of a molecular interaction between Seven in absentia homolog 2 (SIAH2) and MYPT1 that resulted in the proteasomal degradation of the latter in mammalian cells, including neurons and glia. The interaction involved the substrate binding domain of SIAH2 (aa 116-324) and a central region of MYPT1 (aa 445-632) containing a degenerate consensus Siah-binding motif RLAYVAP (aa 493-499) evolutionally conserved from fish to humans. These findings suggest a novel mechanism whereby the ability of MP to modulate myosin light chain might be regulated by the degradation of its targeting subunit MYPT1 through the SIAH2-ubiquitin-proteasomal pathway. In this manner, the turnover of MYPT1 would serve to limit the duration and/or magnitude of MP activity required to achieve a desired physiological effect.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号