首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Growth of Chlamydomonas in the thymidine analog 5-fluorodeoxyuridine (FdUrd) leads to a reduction in the amount of chloroplast DNA and also alters the pattern of chloroplast gene transmission in crosses (Wurtz et al., 1977). We have now found that growth of Chlamydomonas in FdUrd also increases at least 10 to 20 fold the frequency of cells expressing antibiotic resistant or non-photosynthetic mutations in the chloroplast genome with no concomitant increase in nuclear gene mutations with similar phenotypes. Clearly this effect is not locus specific since the non-photosynthetic chloroplast mutations thus far isolated comprise 9 recombinationally separate loci in the chloroplast genome (Shepherd et al., 1977, 1979). Only with the use of FdUrd has isolation of this important class of non-photosynthetic mutations been possible. The efficiency of recovery of chloroplast gene mutations rises as FdUrd concentration increases from 0.1 to 1.0 mM. At higher concentrations of FdUrd, growth rates and mutant yields are reduced. We propose the analog increases the yield of chloroplast mutations by a two-step process in which mutations are first induced as a result of thymidine starvation and then become expressed because the chloroplast DNA has been greatly reduced in ploidy and possibly damaged. FdUrd has its maximal effect on both recovery of chloroplast gene mutations and chloroplast gene transmission in crosses after cells grown in the presence of the analog for several generations remain at stationary phase for about 24 h. These observations suggest that chloroplast DNA metabolism is very active in non-dividing stationary phase cells of Chlamydomonas.  相似文献   

2.
Genomic, proteomic, phylogenetic and evolutionary aspects of a novel gene encoding a putative chloroplast-targeted sulfate permease of prokaryotic origin in the green alga Chlamydomonas reinhardtii are described. This nuclear-encoded sulfate permease gene (SulP) contains four introns, whereas all other known chloroplast sulfate permease genes lack introns and are encoded by the chloroplast genome. The deduced amino acid sequence of the protein showed an extended N-terminus, which includes a putative chloroplast transit peptide. The mature protein contains seven transmembrane domains and two large hydrophilic loops. This novel prokaryotic-origin gene probably migrated from the chloroplast to the nuclear genome during evolution of C. reinhardtii. The SulP gene, or any of its homologues, has not been retained in vascular plants, e.g. Arabidopsis thaliana, although it is encountered in the chloroplast genome of a liverwort (Marchantia polymorpha). A comparative structural analysis and phylogenetic origin of chloroplast sulfate permeases in a variety of species is presented.  相似文献   

3.
Summary We have carried out a molecular and genetic analysis of the chloroplast ATPase in Chlamydomonas reinhardtii. Recombination and complementation studies on 16 independently isolated chloroplast mutations affecting this complex demonstrated that they represent alleles in five distinct chloroplast genes. One of these five, the ac-u-c locus, has been positioned on the physical map of the chloroplast DNA by deletion mutations. The use of cloned spinach chloroplast ATPase genes in heterologous hybridizations to Chlamydomonas chloroplast DNA has allowed us to localize three or possibly four of the ATPase genes on the physical map. The beta and probably the epsilon subunit genes of Chlamydomonas CF1 lie within the same region of chloroplast DNA as the ac-u-c locus, while the alpha and proteolipid subunit genes appear to map adjacent to one another approximately 20 kbp away. Unlike the arrangement in higher plants, these two pairs of genes are separated from each other by an inverted repeat.  相似文献   

4.
A restriction site map of the chloroplast genome ofCaltha palustris L. (Ranunculaceae) has been constructed for 13 restriction endonucleases using filter hybridization with cloned tobacco chloroplast DNA fragments. A size of 153.8 kb has been estimated for theCaltha chloroplast genome. Forty-six chloroplast genes and four open reading frames have been mapped using small tobacco chloroplast gene probes. Chloroplast DNA sequence divergence has been estimated for all pairs of five species ofRanunculaceae, Caltha palustris, Ranunculus bulbosus, R. fascicularis, R. recurvatus, andTrollius ledebourii, and ranges between 0.2% and 9.6% for the total genome. Divergence values are much higher in the small and large single copy regions than in the inverted repeat. Phylogenetic relationships between the five species have been hypothesized using chloroplast DNA restriction site mapping. One hundred and six informative restriction site mutations have been detected using eleven restriction endonucleases. Cladistic analyses of the restriction site mutations have been performed using Wagner and Dollo parsimony algorithms, and confidence intervals have been calculated for the resulting monophyletic groups using bootstrapping. It is demonstrated that restriction site comparisons are applicable to theRanunculaceae on intergeneric level, with the exception of groups having extensive genomic rearrangements. Moreover, sequence divergence is low enough at the interspecific level to allow phylogenetic analyses within genera such asRanunculus.  相似文献   

5.
为探究桃儿七(Sinopodophyllum hexandrum)不同叶绿体基因组特征,本研究以桃儿七5个叶绿体基因组为研究对象,借助生物信息学工具进行基因组图谱构建、重复序列分析、密码子偏好分析、反向重复序列区(inverted repeat, IR)/单拷贝区(single-copy, SC)边界分析、基因组序列比较分析及系统发育分析。结果表明:桃儿七5个叶绿体基因组全长为157 203–157 940 bp,为典型的叶绿体四分体结构,共注释出133–137个基因,说明桃儿七叶绿体基因组具有多样性。桃儿七不同叶绿体基因组简单重复序列(simple sequence repeat, SSR)位点不同,单核苷酸A/T占主要优势,散在重复序列包括正向重复、回文重复和反向重复3类。密码子偏好分析显示有效密码子(effective number of codon,ENc)值为51.14–51.17,密码子偏好性弱,GC与GC3s所占比例小于50%,密码子偏向使用A和U碱基并且以A和U碱基结尾。桃儿七5个叶绿体基因组IR/SC边界和基因组序列均比较保守。系统发育分析结果表明桃儿七和北美桃儿七亲...  相似文献   

6.
7.
8.
We have used a class of Arabidopsis mutants altered in the accumulation and replication of chloroplasts (arc mutants) to investigate the effect of reduced chloroplast number on the photosynthetic competence of leaves. Each of the arc mutants examined (arc3, arc5, and arc6) accumulate only a few (2–15) large chloroplasts per mesophyll cell [K.A. Pyke and R.M. Leech (1992) Plant Physiology 99: 1005–1008]. The increased plastid size maintains a constant plastid to mesophyll cell volume, which has been suggested to compensate for the lower chloroplast number. In fact, we find that reduced chloroplast number has an effect on both the composition and structure of the photosynthetic apparatus, and that each arc mutant has an altered photosynthetic capacity, and we conclude that photosynthetic competence is dependent on proper chloroplast division and development.  相似文献   

9.
Summary The chloroplast gene for the epsilon subunit (atpE) of the CF1/CF0 ATPase in the green alga Chlamydomonas reinhardtii has been localized and sequenced. In contrast to higher plants, the atpE gene does not lie at the 3 end of the beta subunit (atpB) gene in the chloroplast genome of C. reinhardtii, but is located at a position 92 kb away in the other single copy region. The uninterrupted open reading frame for the atpE gene is 423 bp, and the epsilon subunit exhibits 43% derived amino acid homology to that from spinach. Codon usage for the atpE gene follows the restricted pattern seen in other C. reinhardtii chloroplast genes.The genes for the CF0 subunits I (atpF) and IV (atpI) of the ATPase complex have also been mapped on the chloroplast genome of C. reinhardtii. The six chloroplast ATPase genes in C. reinhardtii are dispersed individually between the two single copy regions of the chloroplast genome, an organization strikingly different from the highly conserved arrangement in two operon-like units seen in chloroplast genomes of higher plants.Abbreviations bp base pairs - CF1 chloroplast coupling factor 1 - CF0 chloroplast coupling factor 0 - F1 coupling factor 1 - F0 coupling factor 0 - kb kilobase pairs  相似文献   

10.
Summary A physical map of black pine (Pinus thunbergii) chloroplast DNA (120 kb) was constructed and two separate portions of its nucleotide sequence were determined. One portion contains trnQ-UUG, ORF510, ORF83, trnK-UUU (ORF515 in the trnK intron), ORF22, psbA, trnI-CAU (on the opposing strand) and trnH-GUG, in that order. Sequence analysis of another portion revealed the presence of a 495 by inverted repeat containing trnI-CAU and the 3 end of psbA but lacking rRNA genes. The position of trnI-CAU is unique because most chloroplast DNAs have no gene between psbA and trnH (trnI-CAU is usually located further downstream). Black pine chloroplast DNA lacks rps16, which has been found between trnQ and trnK in angiosperm chloroplast DNAs, but possesses ORF510 instead. This ORF is highly homologous to ORF513 found in the corresponding region of liverwort chloroplast DNA and ORF563 located downstream from trnT in Chlamydomonas moewusii chloroplast DNA. A possible pathway for the evolution of black pine chloroplast DNA is discussed.  相似文献   

11.
Summary A group of chlorophyll deficient mutants (br s mutants) of Chlamydomonas accumulates protoporphyrin and has poorly developed chloroplast membrane systems (Wang et al. 1974). In order to determine whether a poorly developed chloroplast membrane system is the reason for, or the result of, the inability of the br s mutants to metabolize protoporphyrin to chlorophyll, a second mutation was selected which restored chlorophyll synthesis in br s mutants. One such double mutant (br s-2 g-4) was analyzed. The double mutant br s-2 g-4 has partially restored chlorophyll synthesis, but has defective photosystem II and photosystem I electron transport as well as abnormal chloroplast ultrastructure. Since these defects are not present in cells carrying only the g-4 mutation, they are presumed to be caused by the br s-2 mutation. It is concluded that a defect in chloroplast membrane development resulting from the br s-2 mutation causes an apparent defect in magnesium chelation by protoprophyrin. This is consistant with evidence that chlorophyll biosynthesis from magnesium protoporphyrin to chlorophyll takes place on the chloroplast membranes.  相似文献   

12.
The chloroplast genome ofChlamydomonas reinhardtii has been transformed with a chimeric gene consisting of the chloroplastatpA promoter and the bacterial gene for aminoglycoside adenine transferase (aadA). TheatpA-aadA cassette has been placed within the chloroplast DNAEcoRI restriction enzyme fragment 14, or within the chloroplastBamH1 fragment 10. The chimeric constructs were introduced into the chloroplast by particle bombardment. Integration of the cassette into chloroplast DNA then occurred via homologous recombination of sequences flanking the cassette with their corresponding chloroplast sequences. We demonstrate that the chloroplastatpA promoter inatpA-aadA routinely recombines with its endogenous counterpart, resulting in heteroplasmic chloroplast DNA populations that may persist for many generations. The heterologous gene does not require a 3 inverted repeat sequence for its expression. TheatpA-aadA gene copy number, which is dictated here by its position in the chloroplast genome, is proportional to the steady state level ofatpA-aadA mRNA. However, neither genomic position, gene copy number, or mRNA level have a significant effect on cellular resistance to spectinomycin, nor activity of theaadA gene productin vitro. These results suggest that, in the case ofaadA, the limiting step for expression of this gene is at the translational or post-translational level. TheatpA-aadA cassette should prove a useful model for future studies on the maintenance and expression of heterologous genes inC. reinhardtii chloroplasts.  相似文献   

13.
The Arabidopsis arc1 (accumulation and replication of chloroplasts 1) mutant has pale seedlings and smaller, more numerous chloroplasts than the wild type. Previous work has suggested that arc1 affects the timing of chloroplast division but does not function directly in the division process. We isolated ARC1 by map‐based cloning and discovered it encodes FtsHi1 (At4g23940), one of several FtsHi proteins in Arabidopsis. These poorly studied proteins resemble FtsH metalloproteases important for organelle biogenesis and protein quality control but are presumed to be proteolytically inactive. FtsHi1 bears a predicted chloroplast transit peptide and localizes to the chloroplast envelope membrane. Phenotypic studies showed that arc1 (hereafter ftsHi1‐1), which bears a missense mutation, is a weak allele of FtsHi1 that disrupts thylakoid development and reduces de‐etiolation efficiency in seedlings, suggesting that FtsHi1 is important for chloroplast biogenesis. Consistent with this finding, transgenic plants suppressed for accumulation of an FtsHi1 fusion protein were often variegated. A strong T‐DNA insertion allele, ftsHi1‐2, caused embryo‐lethality, indicating that FtsHi1 is an essential gene product. A wild‐type FtsHi1 transgene rescued both the chloroplast division and pale phenotypes of ftsHi1‐1 and the embryo‐lethal phenotype of ftsHi1‐2. FtsHi1 overexpression produced a subtle increase in chloroplast size and decrease in chloroplast number in wild‐type plants while suppression led to increased numbers of small chloroplasts, providing new evidence that FtsHi1 negatively influences chloroplast division. Taken together, our analyses reveal that FtsHi1 functions in an essential, envelope‐associated process that may couple plastid development with division.  相似文献   

14.
The period (per) locus ofDrosophila melanogaster has a fundamental role on the expression of biological rhythms. A DNA sequence, which is homologous to a short region of theDrosophila per locus, has been found at different locations in various species of Dasycladaceae. InBatophora oerstedii, one of the phylogenetically oldest member of Dasycladaceae, a DNA sequence homologous to theDrosophila per locus was detected only in the chloroplast genome but not in the nuclear genome. In contrast, inAcetabularia cliftonii which in phylogeny branched off Batophora 350 million years ago, like in higher plants, theper locus homologous sequence is located in the nuclear rather than the chloroplast genome. The difference in the location of this sequence in phylogenetically separated species of the ancient unicellular and uninucleate green algae suggests gene translocation between the chloroplast genome and the nuclear genome during evolution.Abbreviations nDNA nuclear DNA - ctDNA chloroplast DNA  相似文献   

15.
We have compared the chloroplast DNA maps of a selection of Linum species, using recombinant DNA probes derived from L. usitatissimum chloroplast DNA. The heterologous probes have allowed us to construct physical maps for seven other Linum species. The chloroplast DNAs from two other species, L. flavum and L. tenuifolium, were so divergent that restriction maps could not be derived by this method. Analysis of the differences between the chloroplast DNAs has produced a phylogeny separating the species into two groups. These groups are coincident with previous taxonomic groupings and consist of L. perenne-related and non-related species. The major difference between the chloroplast DNAs of the two groups is a 13-kilobase pair segment near an inverted repeat/large single copy region boundary, which is present in the perenne-group species and absent from the non-perenne group species. In addition, we have identified a mutational hotspot analogous to that found in Nicotiana species chloroplast DNAs (Tassopulu and Kung, 1984). Among the species examined, the amount of base pair substitutions approaches 14% for the sites examined.  相似文献   

16.
The Owen cytoplasm of male-sterile sugar beet is associated with several alterations of mitochondrial DNA and one additional HindIII site of chloroplast DNA. The region of this HindIII site has been cloned and sequenced. The site maps in a small reading frame (orf32) close to the ycf7 (orf31) gene in the petG-psbE region of chloroplast DNA. Possible functional implications of the results are discussed. The chloroplast RFLP marker described could be useful for studies on chloroplast-mitochondrial interactions, CMS of sugar beet, and the origin of the Owen cytoplasm.  相似文献   

17.
长爪栘[木衣](Docynia longiunguis Q.Luo & J.L.Liu)是我国特有的栘[木衣]属植物,具有较高的食药用价值.对其叶绿体基因组进行分析,有助于阐明栘[木衣]属内的系统发育关系,为长爪栘[木衣]资源的开发利用及进一步研究奠定基础.结合其近缘种云南移[木衣]叶绿体基因组数据,在进行全序列比对后...  相似文献   

18.
The Heuchera group (Saxifragaceae) comprises Bensoniella, Conimitella, Elmera, Heuchera, Lithophragma, Mitella, Tellima, Tiarella, and Totmiea. Earlier studies employing morphology, karyology, and flavonoid chemistry indicated that these genera form a natural group, but failed to resolve relationships among them. Restriction site analysis of chloroplast DNA (cpDNA) suggests that Bensoniella, Tolmiea, and Lithophragma are close allies and form the sister group of a large clade containing the remaining six genera. Mitella and Heuchera are both paraphyletic based on cpDNA data. cpDNA data, in conjunction with morphological and allozyme data, suggest at least four examples of intersectional hybridization and subsequent chloroplast capture in Heuchera. Several of these events may be explained via a stepping stone model in which the chloroplast genome of a species was captured by a second species, and then ultimately by a third taxon. Two well-differentiated groups of Tellima populations were detected: one group has a unique chloroplast genome characterized by nine autapomorphies, and the second group has a chloroplast genome identical to that found in M. trifida and M. diversifolia. cpDNA and allozyme data suggest that some Tellima populations probably obtained their chloroplast genome via intergeneric hybridization with M. trifida, M. diversifolia, or the ancestor of these taxa. The occurrence of intergeneric chloroplast transfer in some populations of Tellima, as well as extensive intersectional chloroplast capture in Heuchera, not only suggests caution in the use of cpDNA restriction site data in phylogenetic reconstruction, but also demonstrates again the importance of adequate sampling of conspecific populations. If the intergeneric relationships in the Heuchera group suggested by cpDNA analysis are accurate, fundamental questions arise regarding the validity of certain morphological traits as good taxonomic characters in Saxifragaceae. Furthermore, significant taxonomic changes at the generic level would be necessary.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号