首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well established now that activation of Ca2+ -mobilizing receptors results in the phosphodiesteratic breakdown of phosphatidylinositol 4,5-bisphosphate (PIP2), instead of phosphatidylinositol (PI), into myoinositol 1,4,5-trisphosphate (IP3) and 1,2-diacylglycerol (DG). There is also accumulating experimental evidence which indicates that IP3 and DG may function as second messengers, the former to mobilize Ca2+ from intracellular sites and the latter to activate protein kinase C (PKC). In this review, I have recounted our early studies, which began in 1975 with the original observation that activation of muscarinic cholinergic and adrenergic receptors in the rabbit iris smooth muscle leads to the breakdown of PIP2, instead of PI, and culminated in 1979 in the discovery that the stimulated hydrolysis of PIP2 results in the release of IP3 and DG and that this PIP2 breakdown is involved in the mechanism of smooth muscle contraction. In addition, I have summarized more recent work on the effects of carbachol, norepinephrine, substance P, the platelet-activating factor, prostaglandins, and isoproterenol on PIP2 hydrolysis, IP3 accumulation, DG formation, myosin light chain (MLC) phosphorylation, cyclic AMP production, arachidonic acid release (AA) and muscle contraction in the iris sphincter muscle. These studies suggest: (a) that the IP3-Ca2+ signalling system, through the Ca2+ -dependent MLC phosphorylation pathway, is probably the primary determinant of the phasic component of the contractile response; (b) that the DG-PKC pathway may not be directly involved in the tonic component of muscle contraction, but may play a role in the regulation of IP3 generation; (c) that there are biochemical and functional interactions between the IP3-Ca2+ and the cAMP second messenger systems, cAMP may act as regulator of muscle responses to agonists that exert their action through the IP3-Ca2+ system; and (d) that enhanced PIP2 turnover is involved in desensitization and sensitization of alpha 1-adrenergic- and muscarinic cholinergic-mediated contractions of the dilator and sphincter muscles of the iris, respectively. The contractile response is a typical Ca2+ -dependent process, which makes smooth muscle an ideal tissue to investigate the second messenger functions of IP3 and DG and their interactions with the cAMP system.  相似文献   

2.
Signal transduction in esophageal and LES circular muscle contraction   总被引:2,自引:0,他引:2  
Contraction of normal esophageal circular muscle (ESO) in response to acetylcholine (ACh) is linked to M2 muscarinic receptors activating at least three intracellular phospholipases, i.e., phosphatidylcholine-specific phospholipase C (PC-PLC), phospholipase D (PLD), and the high molecular weight (85 kDa) cytosolic phospholipase A2 (cPLA2) to induce phosphatidylcholine (PC) metabolism, production of diacylglycerol (DAG) and arachidonic acid (AA), resulting in activation of a protein kinase C (PKC)-dependent pathway. In contrast, lower esophageal sphincter (LES) contraction induced by maximally effective doses of ACh is mediated by muscarinic M3 receptors, linked to pertussis toxin-insensitive GTP-binding proteins of the G(q/11) type. They activate phospholipase C, which hydrolyzes phosphatidylinositol bisphosphate (PIP2), producing inositol 1,4,5-trisphosphate (IP3) and DAG. IP3 causes release of intracellular Ca++ and formation of a Ca++-calmodulin complex, resulting in activation of myosin light chain kinase and contraction through a calmodulin-dependent pathway. Signal transduction pathways responsible for maintenance of LES tone are quite distinct from those activated during contraction in response to maximally effective doses of agonists (e.g., ACh). Resting LES tone is associated with activity of a low molecular weight (approximately 14 kDa) pancreatic-like (group 1) secreted phospholipase A2 (sPLA2) and production of arachidonic acid (AA), which is metabolized to prostaglandins and thromboxanes. These AA metabolites act on receptors linked to G-proteins to induce activation of PI- and PC-specific phospholipases, and production of second messengers. Resting LES tone is associated with submaximal PI hydrolysis resulting in submaximal levels of inositol trisphosphate (IP3-induced Ca++ release, and interaction with DAG to activate PKC. In an animal model of acute esophagitis, acid-induced inflammation alters the contractile pathway of ESO and LES. In LES circular muscle, after induction of experimental esophagitis, basal levels of PI hydrolysis are substantially reduced and intracellular Ca++ stores are functionally damaged, resulting in a reduction of resting tone. The reduction in intracellular Ca++ release causes a switch in the signal transduction pathway mediating contraction in response to ACh. In the normal LES, ACh causes release of Ca++ from intracellular stores and activation of a calmodulin-dependent pathway. After esophagitis, ACh-induced contraction depends on influx of extracellular Ca++, which is insufficient to activate calmodulin, and contraction is mediated by a PKC-dependent pathway. These changes are reproduced in normal LES cells by thapsigargin-induced depletion of Ca++ stores, suggesting that the amount of Ca++ available for release from intracellular stores defines the signal transduction pathway activated by a maximally effective dose of ACh.  相似文献   

3.
Elevated CO(2) is generally detrimental to animal cells, suggesting an interaction with core processes in cell biology. We demonstrate that elevated CO(2) blunts G protein-activated cAMP signaling. The effect of CO(2) is independent of changes in intracellular and extracellular pH, independent of the mechanism used to activate the cAMP signaling pathway, and is independent of cell context. A combination of pharmacological and genetic tools demonstrated that the effect of elevated CO(2) on cAMP levels required the activity of the IP(3) receptor. Consistent with these findings, CO(2) caused an increase in steady state cytoplasmic Ca(2+) concentrations not observed in the absence of the IP(3) receptor or under nonspecific acidotic conditions. We examined the well characterized cAMP-dependent inhibition of the isoform 3 Na(+)/H(+) antiporter (NHE3) to demonstrate a functional relevance for CO(2)-mediated reductions in cellular cAMP. Consistent with the cellular biochemistry, elevated CO(2) abrogated the inhibitory effect of cAMP on NHE3 function via an IP(3) receptor-dependent mechanism.  相似文献   

4.
OX1 orexin receptors (OX1R) have been shown to activate receptor-operated Ca2+ influx pathways as their primary signalling pathway; however, investigations are hampered by the fact that orexin receptors also couple to phospholipase C, and therewith inositol-1,4,5-trisphosphate (IP3)-dependent Ca2+ release. We have here devised a method to block the latter signalling in order to focus on the mechanism of Ca2+ influx activation by OX1R in recombinant systems. Transient expression of the IP3-metabolising enzymes IP3-3-kinase-A (inositol-1,4,5-trisphosphate-->inositol-1,3,4,5-tetrakisphosphate) and type I IP3-5-phosphatase (inositol-1,4,5-trisphosphate-->inositol-1,4-bisphosphate) almost completely attenuated the OX1R-stimulated IP3 elevation and Ca2+ release from intracellular stores. Upon attenuation of the IP3-dependent signalling, the receptor-operated Ca2+ influx pathway became the only source for Ca2+ elevation, enabling mechanistic studies on the receptor-channel coupling. Attenuation of the IP3 elevation did not affect the OX1R-mediated ERK (extracellular signal-regulated kinase) activation in CHO cells, which supports our previous finding of the major importance of receptor-operated Ca2+ influx for this response.  相似文献   

5.
This study demonstrates that GTP-binding proteins regulate Fc gamma RIII-mediated signal transduction and inositol phosphate (IPn) generation in human NK cells. In addition the cross-linking of CD16 by mAb, guanosine 5'-o-3-thiophosphate induced 1,4,5 inositol trisphosphate (IP3) release in permeabilized NK cells and their membranes. By contrast, guanosine 5'-o-2-thiophosphate, almost completely inhibited IP3 generation induced by cross-linking with anti-CD16 mAb. Pretreatment of NK cells with 10 to 100 ng/ml Vibrio cholerae toxin (Ctx) almost completely inhibited the generation of IP3 and of other Ipn as well as Fc gamma RIII-operated cell functions such as antibody-dependent cell-mediated cytotoxicity against antibody-coated P815 mastocytoma cells. Isolated B subunit of Ctx was inactive. Bordetella pertussis toxin (0.1 to 1 microgram/ml) only marginally affected IP3 release and antibody-dependent cell-mediated cytotoxicity. Ctx increased cAMP levels in NK cells. However, inhibition of IP3 release preceded the rise of cAMP. Moreover, cAMP analogues (8-chlor-cAMP, 8-bromo-cAMP, dibutiryl-cAMP), as well as intracellular cAMP-enhancing agents (PGE1, PGE2, and forskolin) did not mimicked the effects of Ctx on IP3 generation, suggesting that the adenylate cyclase pathway is not responsible for the early effects of Ctx on Fc gamma RIII-mediated signalling. Overall these results demonstrate that signal transduction via Fc gamma RIII is mediated by Ctx-sensitive cellular membrane GTP-binding protein.  相似文献   

6.
In Dictyostelium, extracellular cAMP interacts specifically with cell-surface receptors to promote the accumulation of a variety of intracellular second messengers, such as 3'-5' cyclic adenosine monophosphate (cAMP) and 1,4,5 inositol trisphosphate (IP3). We and others have shown that activation of the cell-surface cAMP receptor can also modulate the expression of the Dictyostelium genome during development. In at least one instance, synthesis of intracellular cAMP is required for appropriate gene regulation. However, the induction of most cAMP-dependent gene expression can occur in the absence of receptor-mediated activation of adenylate cyclase and a consequent accumulation of intracellular cAMP. These results suggest that other intracellular second messengers produced in response to receptor activation may potentially act as signal transducers to modulate gene expression during development. In vertebrate cells, IP3 and diacylglycerol (DAG) are intracellular activators of specific protein kinases; they are produced in equimolar amounts by cleavage of phosphoinositol bisphosphate after a receptor-mediated activation of a membrane-bound phosphodiesterase. IP3 and, thus, by inference, diacyl-glycerol are synthesized in Dictyostelium as a response to cAMP interacting with its cell-surface receptor. Using defined conditions to inhibit the accumulation of extracellular cAMP, we have examined the effects of these compounds on the expression of genes that require cAMP for their maximal expression. Our results suggest that intracellular IP3 and DAG may in part mediate the action of extracellular cAMP on the expression of the Dictyostelium genome.  相似文献   

7.
PTHR1 (type 1 parathyroid hormone receptors) mediate the effects of PTH (parathyroid hormone) on bone remodelling and plasma Ca2+ homoeostasis. PTH, via PTHR1, can stimulate both AC (adenylate cyclase) and increases in [Ca2+]i (cytosolic free Ca2+ concentration), although the relationship between the two responses differs between cell types. In the present paper, we review briefly the mechanisms that influence coupling of PTHR1 to different intracellular signalling proteins, including the G-proteins that stimulate AC or PLC (phospholipase C). Stimulus intensity, the ability of different PTH analogues to stabilize different receptor conformations ('stimulus trafficking'), and association of PTHR1 with scaffold proteins, notably NHERF1 and NHERF2 (Na+/H+ exchanger regulatory factor 1 and 2), contribute to defining the interactions between signalling proteins and PTHR1. In addition, cAMP itself can, via Epac (exchange protein directly activated by cAMP), PKA (protein kinase A) or by binding directly to IP3Rs [Ins(1,4,5)P3 receptors] regulate [Ca2+]i. Epac leads to activation of PLC?, PKA can phosphorylate and thereby increase the sensitivity of IP3Rs and L-type Ca2+ channels, and cAMP delivered at high concentrations to IP3R2 from AC6 increases the sensitivity of IP3Rs to InsP3. The diversity of these links between PTH and [Ca2+]i highlights the versatility of PTHR1. This versatility allows PTHR1 to evoke different responses when stimulated by each of its physiological ligands, PTH and PTH-related peptide, and it provides scope for development of ligands that selectively harness the anabolic effects of PTH for more effective treatment of osteoporosis.  相似文献   

8.
The effect of cAMP on ATP-induced intracellular Ca+ mobilization in cultured rat aortic smooth muscle cells was investigated. Treatment of cells for 3 min at 37 degrees C with dibutyryl cAMP, a membrane-permeable analogue of cAMP, at concentration up to 500 microM resulted in 1.5- to 1.7-fold increase in the peak cytosolic Ca2+ concentration when cells were stimulated with 3 to 200 microM ATP either in the presence or absence of extracellular Ca2+. Similar results were obtained when 0.5 mM 8-Br-cAMP or 10 microM forskolin was used instead of dibutyryl cAMP. In contrast to the Ca2+ response, dibutyryl cAMP did not affect ATP-induced formation of inositol trisphosphate (IP3). Furthermore, the dibutyryl cAMP treatment did not affect the size of the Ca2+ response elicited by 10 microM ionomycin. These results suggest that intracellular cAMP potentiates the ATP-induced Ca2+ response by enhancing Ca2+ release from the intracellular Ca2+ store(s), rather than by increasing the ATP-induced production of IP3 or by increasing the size of the intracellular Ca2+ store. Using saponin-permeabilized cells, we have shown directly that cAMP enhances Ca2+ mobilization by potentiating the Ca2+-releasing effect of IP3 from the intracellular Ca2+ store.  相似文献   

9.
The present studies were conducted to determine the effects of gonadotropins (LH and hCG) and prostaglandin F2a (PGF2a) on the production of "second messengers" and progesterone synthesis in purified preparations of bovine small luteal cells. Corpora lutea were removed from heifers during the luteal phase of the normal estrous cycle. Small luteal cells were isolated by unit-gravity sedimentation and were 95-99% pure. LH provoked rapid and sustained increases in the levels of [3H]inositol mono-, bis-, and trisphosphates (IP, IP2, IP3, respectively), cAMP and progesterone in small luteal cells. LiCl (10 mM) enhanced inositol phosphate accumulation in response to LH but had no effect on LH-stimulated cAMP or progesterone accumulation. Time course studies revealed that LH-induced increases in IP3 and cAMP occurred simultaneously and preceded the increases in progesterone secretion. Similar dose-response relationships were observed for inositol phosphate and cAMP accumulation with maximal increases observed with 1-10 micrograms/ml of LH. Progesterone accumulation was maximal at 1-10 ng/ml of LH. LH (1 microgram/ml) and hCG (20 IU/ml) provoked similar increases in inositol phosphate, cAMP and progesterone accumulation in small luteal cells. 8-Bromo-cAMP (2.5 mM) and forskolin (1 microM) increased progesterone synthesis but did not increase inositol phosphate accumulation in 30 min incubations. PGF2a (1 microM) was more effective than LH (1 microgram/ml) at stimulating increases in inositol phosphate accumulation (4.4-fold vs 2.2-fold increase for PGF2a and LH, respectively). The combined effects of LH and PGF2a on accumulation of inositol phosphates were slightly greater than the effects of PGF2a alone. In 30 min incubations, PGF2a had no effect on cAMP accumulation and provoked small increases in progesterone secretion. Additionally, PGF2a treatment had no significant effect on LH-induced cAMP or progesterone accumulation in 30 min incubations of small luteal cells. These findings provide the first evidence that gonadotropins stimulate the cAMP and IP3-diacylglycerol transmembrane signalling systems in bovine small luteal cells. PGF2a stimulated phospholipase C activity in small cells but did not reduce LH-stimulated cAMP or progesterone accumulation. These results also demonstrate that induction of functional luteolysis in vitro requires more than the activation of the phospholipase C-IP3/calcium and -diacylglycerol/protein kinase C transmembrane signalling system.  相似文献   

10.
The effects of leukotriene (LT) D4 on inositol trisphosphate (IP3) accumulation, cAMP formation, and contraction in the iris sphincter smooth muscle of different mammalian species were investigated and functional and biochemical reciprocal interactions between the IP3-Ca2+ and cAMP second messenger systems were demonstrated. The effects of the LT on the biochemical and pharmacological responses are dose- and time-dependent, and are not mediated through the release of acetylcholine or prostaglandins. Addition of LTD4 (0.1-1 microM) to cat and bovine iris sphincters increased IP3 accumulation by 60% of that of the control and induced muscle contraction (the EC50 value for the contractile response in the cat sphincter was 4.8 x 10(-9) M), but had no effect on cAMP formation in these species. In contrast, addition of LTD4 to dog, human, pig, and rabbit sphincters increased cAMP formation by 53-61% of their respective controls, but had no effect on IP3 accumulation and on the contractile state. The rates of formation of LTs in iris sphincters of the different species were found to increase in the following order: bovine less than cat less than human less than dog less than pig less than rabbit. This could suggest that desensitization of LT receptors may in part underlie the species differences observed in the effects of LTD4. We suggest that LTD4 may be involved in regulation of contraction and relaxation in the iris sphincter by increasing IP3 accumulation and consequently Ca2+ mobilization and muscle contraction, and by elevating the level of cAMP which in turn may be involved in the regulation of muscle tension.  相似文献   

11.
FSH is known to activate Gs/cAMP signaling pathway in Sertoli cells (SCs) to support spermatogenesis. However, the molecular mechanism of FSH-induced Gs/cAMP-independent Ca2+-influx in SCs is not clear. In this study, FSH indeed induced an immediate and dose-dependent intracellular Ca2+-elevation in rat SCs. In the presence of EDTA (2.5 mm) or in the absence of extracellular Ca2+, the FSH-induced intracellular Ca2+-elevation was abolished. The confocal microscopic observation of Ca2+ image revealed that the SC cellular Ca2+ level was gradually increased after 50 sec of FSH treatment. Dantrolene, a blocker of intracellular Ca2+ release, did not affect this FSH-induced intracellular Ca2+ elevation. The pretreatment of rat SCs with phosphatidylinositol-phospholipase C (PLC)-specific inhibitor, U73122 (3 and 10 microm), inhibited the FSH-induced Ca2+-influx in a dose-dependent manner, but treatment with Gs-specific inhibitor, NF449 (0.1 and 0.3 microm), did not. On the other hand, the activation of G alpha h was immediately induced by FSH in the rat SCs within 5 sec of treatment. The translocation of PLC-delta1 from cytosol to cell membrane and the formation of G alpha h /PLC-delta1 complexes occurred within 5 and 10 sec, respectively, of FSH exposure. The intracellular inositol 1,4,5-triphosphate (IP3) production was also detected after 30 sec of FSH treatment. The synthetic peptide of PLC-delta1 (TIPWNSLKQGYRHVHLL), not Gs inhibitor, predominantly inhibited the FSH-induced PLC-delta1 translocation, formation of G alpha h /PLC-delta1 complex, intracellular IP3 production, and Ca2+ influx. In contrast, the peptide did not interfere with FSH-induced intracellular cAMP accumulation. In conclusion, the FSH-induced immediate Ca2+ influx is unambiguously mediated by an alternative G alpha h /PLC-delta1/IP3 pathway that is distinct from the Gs/cAMP pathway in rat SCs.  相似文献   

12.
Clusters of CD59, a glycosylphosphatidylinositol-anchored receptor (GPI-AR), with physiological sizes of approximately six CD59 molecules, recruit Galphai2 and Lyn via protein-protein and raft interactions. Lyn is activated probably by the Galphai2 binding in the same CD59 cluster, inducing the CD59 cluster's binding to F-actin, resulting in its immobilization, termed stimulation-induced temporary arrest of lateral diffusion (STALL; with a 0.57-s lifetime, occurring approximately every 2 s). Simultaneous single-molecule tracking of GFP-PLCgamma2 and CD59 clusters revealed that PLCgamma2 molecules are transiently (median = 0.25 s) recruited from the cytoplasm exclusively at the CD59 clusters undergoing STALL, producing the IP(3)-Ca(2+) signal. Therefore, we propose that the CD59 cluster in STALL may be a key, albeit transient, platform for transducing the extracellular GPI-AR signal to the intracellular IP(3)-Ca(2+) signal, via PLCgamma2 recruitment. The prolonged, analogue, bulk IP(3)-Ca(2+) signal, which lasts for more than several minutes, is likely generated by the sum of the short-lived, digital-like IP(3) bursts, each created by the transient recruitment of PLCgamma2 molecules to STALLed CD59.  相似文献   

13.
Glucagon and prostaglandin E1 stimulate adenylate cyclase in Madin-Darby canine kidney cells with an approximate EC50 of 3*10(-8) and 1*10(-7) M respectively. The rise in cAMP is accompanied by a transient rise in intracellular Ca++ measured with the fluorescent calcium indicator Indo-1. A comparable increase in intracellular Ca2+ without a rise in cAMP occurs with the cholinergic agonist carbamylcholine. Stimulation of adenylate cyclase by the beta-adrenergic agonist isoproterenol or directly by forskolin has no effect on intracellular Ca++. By all criteria studied the rise in intracellular Ca++ and the increase in cAMP are independent from each other.  相似文献   

14.
Micromolar concentrations of extracellular beta-NAD+ (NAD(e)+) activate human granulocytes (superoxide and NO generation and chemotaxis) by triggering: (i) overproduction of cAMP, (ii) activation of protein kinase A, (iii) stimulation of ADP-ribosyl cyclase and overproduction of cyclic ADP-ribose (cADPR), a universal Ca2+ mobilizer, and (iv) influx of extracellular Ca2+. Here we demonstrate that exposure of granulocytes to millimolar rather than to micromolar NAD(e)+ generates both inositol 1,4,5-trisphosphate (IP3) and cAMP, with a two-step elevation of intracellular calcium levels ([Ca2+]i): a rapid, IP3-mediated Ca2+ release, followed by a sustained influx of extracellular Ca2+ mediated by cADPR. Suramin, an inhibitor of P2Y receptors, abrogated NAD(e)+-induced intracellular increases of IP3, cAMP, cADPR, and [Ca2+]i, suggesting a role for a P2Y receptor coupled to both phospholipase C and adenylyl cyclase. The P2Y(11) receptor is the only known member of the P2Y receptor subfamily coupled to both phospholipase C and adenylyl cyclase. Therefore, we performed experiments on hP2Y(11)-transfected 1321N1 astrocytoma cells: micromolar NAD(e)+ promoted a two-step elevation of the [Ca2+]i due to the enhanced intracellular production of IP3, cAMP, and cADPR in 1321N1-hP2Y(11) but not in untransfected 1321N1 cells. In human granulocytes NF157, a selective and potent inhibitor of P2Y(11), and the down-regulation of P2Y(11) expression by short interference RNA prevented NAD(e)+-induced intracellular increases of [Ca2+]i and chemotaxis. These results demonstrate that beta-NAD(e)+ is an agonist of the P2Y(11) purinoceptor and that P2Y(11) is the endogenous receptor in granulocytes mediating the sustained [Ca2+]i increase responsible for their functional activation.  相似文献   

15.
The whole cell patch-clamp technique, in both standard and perforated patch configurations, was used to study the influence of Na+-Ca++ exchange on rundown of voltage-gated Ca++ currents and on the duration of tail currents mediated by Ca++-dependent Cl- channels. Ca++ currents were studied in GH3 pituitary cells; Ca++-dependent Cl- currents were studied in AtT-20 pituitary cells. Na+-Ca++ exchange was inhibited by substitution of tetraethylammonium (TEA+) or tetramethylammonium (TMA+) for extracellular Na+. Control experiments demonstrated that substitution of TEA+ for Na+ did not produce its effects via a direct interaction with Ca++-dependent Cl- channels or via blockade of Na+-H+ exchange. When studied with standard whole cell methods, Ca++ and Ca++-dependent Cl- currents ran down within 5-20 min. Rundown was accelerated by inhibition of Na+-Ca++ exchange. In contrast, the amplitude of both Ca++ and Ca++-dependent Cl- currents remained stable for 30-150 min when the perforated patch method was used. Inhibition of Na+-Ca++ exchange within the first 30 min of perforated patch recording did not cause rundown. The rate of Ca++-dependent Cl- current deactivation also remained stable for up to 70 min in perforated patch experiments, which suggests that endogenous Ca++ buffering mechanisms remained stable. The duration of Ca++-dependent Cl- currents was positively correlated with the amount of Ca++ influx through voltage-gated Ca++ channels, and was prolonged by inhibition of Na+-Ca++ exchange. The influence of Na+-Ca++ exchange on Cl- currents was greater for larger currents, which were produced by greater influx of Ca++. Regardless of Ca++ influx, however, the prolongation of Cl- tail currents that resulted from inhibition of Na+-Ca++ exchange was modest. Tail currents were prolonged within tens to hundreds of milliseconds of switching from Na+- to TEA+-containing bath solutions. After inhibition of Na+-Ca++ exchange, tail current decay kinetics remained complex. These data strongly suggest that in the intact cell, Na+-Ca++ exchange plays a direct but nonexclusive role in limiting the duration of Ca++-dependent membrane currents. In addition, these studies suggest that the perforated patch technique is a useful method for studying the regulation of functionally relevant Ca++ transients near the cytoplasmic surface of the plasma membrane.  相似文献   

16.
The constitutively active Gqalpha mutant construct (GqalphaQ-L) in Xenopus early embryos was overexpressed and the effects on dorsoventral patterning examined. It was found that prolonged stimulation of inositol 1,4,5-trisphosphate (IP3)-Ca2+ signaling by overexpression of GqalphaQ-L led to desensitization of IP3-induced Ca2+ release (IICR). Desensitization of IICR on the ventral side specifically induced an ectopic dorsal axis due to the conversion of ventral marginal mesoderm to adopt a dorsal fate. This effect of desensitization resembles that of inhibitory antibodies against the IP3 receptor, as reported previously. These results strengthen the earlier finding that active IP3-Ca2+ signaling functions in ventral signaling during the early embryonic development of Xenopus. Furthermore, the nature of downregulation of the Xenopus IP3 receptor through continuous stimulation of IP3-Ca2+ signaling might play a role in regulating endogenous IP3-Ca2+ signaling in Xenopus early development.  相似文献   

17.
The identification of 2'-O-methyl substituted adenosine-3',5'-cyclic monophosphate (cAMP) analogs that activate the Epac family of cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs, also known as Epac1 and Epac2), has ushered in a new era of cyclic nucleotide research in which previously unrecognized signalling properties of the second messenger cAMP have been revealed. These Epac-Selective Cyclic AMP Analogs (ESCAs) incorporate a 2'-O-methyl substitution on the ribose ring of cAMP, a modification that impairs their ability to activate protein kinase A (PKA), while leaving intact their ability to activate Epac (the Exchange Protein directly Activated by Cyclic AMP). One such ESCA in wide-spread use is 8-pCPT-2'-O-Me-cAMP. It is a cell-permeant derivative of 2'-O-Me-cAMP, and it is a super activator of Epac. A wealth of newly published studies demonstrate that 8-pCPT-2'-O-Me-cAMP is a unique tool with which to asses atypical actions of cAMP that are PKA-independent. Particularly intriguing are recent reports demonstrating that ESCAs reproduce the PKA-independent actions of ligands known to stimulate Class I (Family A) and Class II (Family B) GTP-binding protein-coupled receptors (GPCRs). This topical review summarizes the current state of knowledge regarding the molecular pharmacology and signal transduction properties of Epac-selective cAMP analogs. Special attention is focused on the rational drug design of ESCAs in order to improve their Epac selectivity, membrane permeability, and stability. Also emphasized is the usefulness of ESCAs as new tools with which to assess the role of Epac as a determinant of intracellular Ca2+ signalling, ion channel function, neurotransmitter release, and hormone secretion.  相似文献   

18.
Prostacyclin permissively allows increased cAMP and cerebral vasodilation to hypercapnia in piglets. The prostacyclin receptor (IP) is coupled to phospholipase C (PLC) in piglet cerebral microvascular smooth muscle cells (SMC). We hypothesize that inhibition of PLC blocks the permissive action of IP receptor agonist, iloprost, and direct activation of PKC substitutes for the IP receptor agonist in SMC. SMC cAMP production was measured at normal pHi/pHo and with reduced pHi/pHo in the absence and presence of iloprost (100 pM). Half of the cells were pretreated with U73122, the PLC inhibitor, which decreased the basal IP3 and blocked the increase in IP3 caused by iloprost. Without iloprost, decreasing pHi/pHo increased cAMP production (40%). With iloprost, the cAMP response to acidosis increased to over 80%. U73122 prevented accentuation of the cAMP response by iloprost. Phorbol myristate acetate augmented the response to acidosis similarly to iloprost. These data suggest IP agonists augment the cAMP response to acidosis via coupling through PLC to activate PKC.  相似文献   

19.
Intracellular levels of the second messengers, 3',5'-cyclic adenosine monophosphate (cAMP) and inositol 1,4,5-trisphosphate (IP(3)) were measured in the Malpighian tubules of Aedes aegypti following the in vitro application of 5-hydroxytryptamine (5-HT) and the putative mosquito diuretic peptides, Culex salinarius diuresin and mosquito leucokinins (culekinin depolarizing peptides (CDPs) I, II, III, A. aegypti leucokinin peptides (ALPs) I, II, III). The C. salinarius diuresin significantly (p<0.05) increased tubule intracellular cAMP concentrations. Treatment of tubules with either 5-HT or CDP-II resulted in significant increases in both intracellular cAMP and IP(3) concentrations. All of the mosquito leucokinins, with the exception of CDP-I, significantly stimulated intracellular IP(3) in isolated tubules. These data suggest that the mosquito leucokinins may function on the Malpighian tubules of A. aegypti by increasing the intracellular Ca(2+) levels through the release of IP(3) sensitive Ca(2+) stores. The physiological relevance of these data to the regulation of mosquito Malpighian tubule function is discussed.  相似文献   

20.
A stable recombinant chinese hamster ovary (CHO) cell model system expressing the human type-1 receptor for parathyroid hormone and parathyroid hormone-related peptide (hPTH-R) was established for the analysis of human PTH (hPTH) variants. The cell lines showed receptor expression in the range from 10(5) to I.9 x 10(6) receptors per cell. The affinity of the receptors for hPTH-(1-34) was independent of the receptor number per cell (Kd approximately = 8 nmol/1). The induction of cAMP by hPTH-(1-34) is maximal in clones expressing >2x10(5) receptors per cell and Ca++ signals were maximal in cell lines expressing >1.4x10(6) receptors per cell. Second messenger specific inhibitors demonstrated that PTH-induced increases in intracellular cAMP and Ca++ are independent and Ca++ ions are derived from intracellular stores. The cAMP-specific receptor activator hPTH-(1-31) showed also an increase in intracellular Ca++. Even in cell lines expressing more than 10(6) receptors per cell the Ca++/PKC specific activator hPTH-(28-48) did not activate hPTH-Rs. Based on these results, synthesis of further derivatives of PTH is required to identify pathway-specific ligands for the type-1 hPTH-R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号