首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Production of oligosaccharides by autohydrolysis of brewery's spent grain   总被引:1,自引:0,他引:1  
Brewery's spent grain was treated with water in a process oriented towards the production of xylo-oligosaccharides (XOS). A wide range of temperatures and reaction times were tested and the effects of these operational variables on hemicellulose solubilization and reaction products were investigated. The maximal XOS yield (61% of the feedstock xylan) was obtained at 190 degrees C after 5 min of reaction. Several oligosaccharide mixtures with different molecular weight distributions were obtained depending on temperature and reaction time. Longer reaction times led to decreased oligosaccharide production and enhanced concentrations of monosaccharides, sugar decomposition products and acetic acid. With reaction times leading to the maximal yields of XOS, little decomposition into organic acids and aldehydes was found at all the temperatures assayed. From the composition of processed solids, it was calculated that 63-77% of the initial xylan was selectively solubilized in autohydrolysis treatments.  相似文献   

2.
The focus of this work was to determine the utility of 1H NMR spectroscopy in the quantification of sugars resulting from the solubilization of hemicelluloses during the autohydrolysis of hardwoods and the use of this technique to evaluate the kinetics of this process over a range of temperatures and times. Yields of residual xylan, xylooligomers, xylose, glucose, and the degraded products of sugars, i.e., furfural and HMF (5-hydroxymethyl furfural), were determined. The monosaccharide and oligomer contents were quantified with a recently developed high resolution 1H NMR spectroscopic analysis. This method provided precise measurement of the residual xylan and cellulose remaining in the extracted wood samples and xylose and glucose in the hydrolyzates. NMR was found to exhibit good repeatability and provided carbohydrate compositional results comparable to published methods for sugar maple and aspen woods.  相似文献   

3.
For the purpose of hydrolysing hemicelluloses to oligomers and monomers, Sesbania grandiflora samples were subjected to isothermal autohydrolysis in the temperatures ranging from 145 °C to 190 °C, using a solid to liquid ratio of 8 and reaction times up to 7.5 h. Kinetic models based on sequential pseudo-homogeneous first order Kinetics with Arrhenius type temperature dependence were employed for describing the time course of the main hemicelluloses compounds and their degradation products. The hydrothermal treatment results show that Sesbania grandiflora can be employed as an alternative raw material for the production of XOS leading to high concentrations of XOS (14.1 g/L in the experiment carried out at 190 °C and 0.1 h) and xylan to XOS conversion (62.6% in the experiment carried out at 190 °C and 6 min). The model proposed provides a satisfactory interpretation of the experimental data obtained in the hydrothermal treatments of this study.  相似文献   

4.
A comprehensive kinetic study of the acid hydrolysis of concentrated brewing bagasse slurries was performed. The use of the simple series reaction model was found to be suitable when a "heterogeneous correction" (pseudosubstrate-inhibition) is taken into account in slurries with low liquid-to-biomass ratios. Rate constants are shown to be dependent not only on temperature and acid concentration but essentially also on the initial biomass concentration. Actual rate constants, activation energies, and acid and substrate reaction orders are reported for xylan, arabinan, and alpha-glucan acid saccharification. There is a threshold acid loading necessary to overcome the 80% conversion, but no threshold has been found to overcome the "neutralizing" property of cellulosic materials. Reversible acid capture from brewing bagasse has been postulated. The highest monosccharide concentration into hydrolyzates has been found (65 g/L) after 10 h treatment, but economic considerations led us to treat a mean-concentrated slurry (156 g/L) with 0.3M H(2)SO(4) at 96 degrees C, thus obtaining 45.5 g/L monosaccharides in 5 h with 50% less furfural content. After pH regulation only, growth of Clostridium acetobutylicum has been obtained, although complete sugar comsumption has not been achieved. Experiments are now underway to reach complete digestion and to investigate the increase of enzymic accessibility into residual substrate rich in cellulose.  相似文献   

5.
Sugar cane bagasse was pretreated with either liquid hot water (LHW) or steam using the same 25 l reactor. Solids concentration ranged from 1% to 8% for LHW pretreatment and was > or = 50% for steam pretreatment. Reaction temperature and time ranged from 170 to 230 degrees C and 1 to 46 min, respectively. Key performance metrics included fiber reactivity, xylan recovery, and the extent to which pretreatment hydrolyzate inhibited glucose fermentation. In four cases, LHW pretreatment achieved > or = 80% conversion by simultaneous saccharification and fermentation (SSF). > or = 80% xylan recovery, and no hydrolyzate inhibition of glucose fermentation yield. Combined effectiveness was not as good for steam pretreatment due to low xylan recovery. SSF conversion increased and xylan recovery decreased as xylan dissolution increased for both modes. SSF conversion, xylan dissolution. hydrolyzate furfural concentration, and hydrolyzate inhibition increased, while xylan recovery and hydrolyzate pH decreased, as a function of increasing LHW pretreatment solids concentration (1-8%). These results are consistent with the notion that autohydrolysis plays an important. if not exclusive, role in batch hydrothermal pretreatment. Achieving concurrently high (greater than 90%) SSF conversion and xylan recovery will likely require a modified reactor configuration (e.g. continuous percolation or base addition) that better preserves dissolved xylan.  相似文献   

6.
Xylooligomer solutions from autohydrolysis of corn cobs were subjected to an enzymatic post-hydrolysis using commercial enzymes with xylanolytic activity. The effect of temperature and pH on the conversion of xylooligomers into xylose was assessed at low enzyme to substrate ratio. Further experiments to evaluate the influence of enzyme loading were carried out. Balanced mixtures of selected formulations were also used. The xylose solutions obtained by coupling autohydrolysis and enzymatic post-hydrolysis stages contained up to 24 g xylose/l, were free of sugar-dehydration products and, by selecting the enzyme dosage and activities, the acetic acid concentration could be reduced, thus improving their potential fermentability. Regardless of the endo- and exo-activity loadings, the maximum conversion achieved either with single or with mixed commercial formulations, was 80% of the theoretical. This fact suggests the existence of a remaining fraction of substituted xylooligomers accounting for 20% of the initial xylan. A close relationship between deacetylation and xylose generation was also observed.  相似文献   

7.
Pretreatment of corn stover in 0.5% sulfuric acid at 160 °C for 40 min realized a maximum monomeric plus oligomeric xylose yield of 93.1% compared to a maximum of only 71.5% for hydrothermal (no added mineral acid) pretreatment at 180 °C for 30 min. To explain differences in dilute acid and hydrothermal yields, a fast reacting xylan fraction (0.0889) was assumed to be able to directly form monomeric xylose while a slow reacting portion (0.9111) must first form oligomers during hydrothermal pretreatment. Two reactions to oligomers were proposed: reversible from fast reacting xylan and irreversible from slow reacting xylan. A kinetic model and its analytical solution simulated xylan removal data well for dilute acid and hydrothermal pretreatment of corn stover. These results suggested that autocatalytic reactions from xylan to furfural in hydrothermal pretreatment were controlled by oligomeric xylose decomposition, while acid-catalytic reactions in dilute acid pretreatment were controlled by monomeric xylose decomposition.  相似文献   

8.
Eucalyptus wood samples were treated with water under selected operational conditions (autohydrolysis reaction) to obtain a liquid phase containing hemicellulose-decomposition products (mainly acetylated xylooligosaccharides, xylose and acetic acid). In a further acid-catalysed step (posthydrolysis reaction), xylooligosaccharides were converted into xylose, a carbon source for further fermentation. The kinetic pattern governing the posthydrolysis step was established by reacting xylooligosaccharide-containing liquors at 100.5 degrees C, 115 degrees C, 125 degrees C or 135 degrees C in media containing 0.5, 1.0, 1.5 or 2 wt% of catalyst (sulphuric acid). The time course of the concentrations of xylooligosaccharides, xylose, furfural and acetic acid were determined, and the results were interpreted by means of a kinetic model which allowed a close reproduction of the experimental data. Almost quantitative conversion of xylooligosaccharides into xylose was achieved under a variety of experimental conditions. The first-order, kinetic coefficient for xylooligosaccharide hydrolysis (k1, h(-1)) varied with both temperature (T, K) and molar sulphuric acid concentration (C) according to the equation In k1 = 36.66 + 1.00lnC - 108.0/(8.314T). The hydrolysis of acetyl groups followed a first-order kinetics. The corresponding kinetic coefficient (ka, h(-1) was correlated with the operational conditions by the equation Inka = 26.80+ 1.18 InC - 73.37/(8.314T).  相似文献   

9.
Bacillus stearothermophilus T-6 produced an alpha-L-arabinofuranosidase when grown in the presence of L-arabinose, sugar beet arabinan, or oat spelt xylan. At the end of a fermentation, about 40% of the activity was extracellular, and enzyme activity in the cell-free supernatant could reach 25 U/ml. The enzymatic activity in the supernatant was concentrated against polyethylene glycol 20000, and the enzyme was purified eightfold by anion-exchange and hydrophobic interaction chromatographies. The molecular weight of T-6 alpha-L-arabinofuranosidase was 256,000, and it consisted of four identical subunits as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration. The native enzyme had a pI of 6.5 and was most active at 70 degrees C and at pH 5.5 to 6.0. Its thermostability at pH 7.0 was characterized by half-lives of 53, 15, and 1 h at 60, 65, and 70 degrees C, respectively. Kinetic experiments at 60 degrees C with p-nitrophenyl alpha-L-arabinofuranoside as a substrate gave a Vmax, a Km, and an activation energy of 749 U/mg, 0.42 mM, and 16.6 kcal/mol, (ca. 69.5 kJ/mol), respectively. The enzyme had no apparent requirement for cofactors, and its activity was strongly inhibited by 1 mM Hg2+. T-6 alpha-L-arabinofuranosidase released L-arabinose from arabinan and had low activity on oat spelt xylan. The enzyme acted cooperatively with T-6 xylanase in hydrolyzing oat spelt xylan, and L-arabinose, xylose, and xylobiose were detected as the end reaction products.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
This report introduces the biotechnological valorization potential indicator (BVPI) concept, a metric to measure the degree of suitability of lignocellulosic materials to be used as feedstock in a biorefinery framework. This indicator groups the impact of the main factors influencing upgrade-ability, both the biological/chemical nature of the materials, and the economical, technological and geographical factors. The BVPI was applied to the identification of the most relevant opportunities and constraints pertaining to the lignocellulosic by-products from the Portuguese agro-industrial cluster. Several by-products were identified with a high valorization potential, e.g., rice husks, brewery's spent grain, tomato pomace, carob pulp, de-alcoholized grape bagasse, and extracted olive bagasse, that would greatly benefit from the further development of specific biotechnology processes, specifically concerning the upgrade of their hemicellulosic fraction.  相似文献   

11.
Hot water extraction of wood at elevated temperatures may be a suitable method to produce hemicellulose-lean pulps and to recover xylan-derived products from the water extract. In this study, water extractions of birch wood were conducted at temperatures between 180 and 240 °C in a batch reactor. Xylan was extensively removed, whereas cellulose was partly degraded only at temperatures above 180 °C. Under severe extraction conditions, acetic acid content in the water extract was higher than the corresponding amount of acetyl groups in wood. In addition to oligo- and monosaccharides, considerable amounts of furfural and 5-hydroxymethylfurfural (HMF) were recovered from the extracts. After reaching a maximum, the furfural yield remained constant with increasing extraction time. This maximum slightly decreased with increasing extraction temperature, suggesting the preferential formation of secondary degradation products from xylose. Kinetic models fitting experimental data are proposed to explain degradation and conversion reactions of xylan and glucan.  相似文献   

12.
To develop a novel noncatalytic biomass refinery process that can be used as a portable process, superheated steam pyrolysis was investigated to produce both carbonized solid fuels and chemicals using a large-scale reactor. Individual biomass components and native biomass (Sugi, Japanese cedar) were pyrolyzed. Between 150 and 400 degrees C, the vaporizing fractions of cellulose, xylan, and kraft lignin were summarized using a numerical model. Cellulose was converted to glycolaldehyde, furfural, 5-hydroxymethyl furfural and levoglucosan, whereas xylan was converted to glycolaldehyde, furfural, and acetic acid. Kraft lignin produced a slight yield of phenol and guaiacol. The total vaporization fraction of Sugi and its vaporizing rate were explained sufficiently using a numerical model based on the weighted average of the vaporizing properties of the individual components. However, the yields of phenol, guaiacol, and acetic acid were underestimated, while the yields of furfurals and levoglucosan were overestimated. Possible synergetic effects among chemicals in the superheated steam pyrolysis of native biomass were also discussed.  相似文献   

13.
Furfural is an important inhibitor of yeast metabolism in lignocellulose-derived substrates. The effect of furfural on the physiology of Saccharomyces cerevisiae CBS 8066 was investigated using anaerobic continuous cultivations. Experiments were performed with furfural in the feed medium (up to 8.3 g/L) using three different dilution rates (0.095, 0.190, and 0.315 h(-1)). The measured concentration of furfural was low (< 0.1 g/L) at all steady states obtained. However, it was not possible to achieve a steady state at a specific conversion rate of furfural, q(f), higher than approximately 0.15 g/g.h. An increased furfural concentration in the feed caused a decrease in the steady-state glycerol yield. This agreed well with the decreased need for glycerol production as a way to regenerate NAD+, i.e., to function as a redox sink because furfural was reduced to furfuryl alcohol. Transient experiments were also performed by pulse addition of furfural directly into the fermentor. In contrast to the situation at steady-state conditions, both glycerol and furfuryl alcohol yields increased after pulse addition of furfural to the culture. Furthermore, the maximum specific conversion rate of furfural (0.6 g/g.h) in dynamic experiments was significantly higher than what was attainable in the chemostat experiments. The dynamic furfural conversion could be described by the use of a simple Michaelis-Menten-type kinetic model. Also furfural conversion under steady-state conditions could be explained by a Michaelis-Menten-type kinetic model, but with a higher affinity and a lower maximum conversion rate. This indicated the presence of an additional component with a higher affinity, but lower maximum capacity, either in the transport system or in the conversion system of furfural.  相似文献   

14.
This study used two different approaches to model changes in biomass composition during microwave‐based pretreatment of switchgrass: kinetic modeling using a time‐dependent rate coefficient, and a Mamdani‐type fuzzy inference system. In both modeling approaches, the dielectric loss tangent of the alkali reagent and pretreatment time were used as predictors for changes in amounts of lignin, cellulose, and xylan during the pretreatment. Training and testing data sets for development and validation of the models were obtained from pretreatment experiments conducted using 1–3% w/v NaOH (sodium hydroxide) and pretreatment times ranging from 5 to 20 min. The kinetic modeling approach for lignin and xylan gave comparable results for training and testing data sets, and the differences between the predictions and experimental values were within 2%. The kinetic modeling approach for cellulose was not as effective, and the differences were within 5–7%. The time‐dependent rate coefficients of the kinetic models estimated from experimental data were consistent with the heterogeneity of individual biomass components. The Mamdani‐type fuzzy inference was shown to be an effective approach to model the pretreatment process and yielded predictions with less than 2% deviation from the experimental values for lignin and with less than 3% deviation from the experimental values for cellulose and xylan. The entropies of the fuzzy outputs from the Mamdani‐type fuzzy inference system were calculated to quantify the uncertainty associated with the predictions. Results indicate that there is no significant difference between the entropies associated with the predictions for lignin, cellulose, and xylan. It is anticipated that these models could be used in process simulations of bioethanol production from lignocellulosic materials. Biotechnol. Bioeng. 2010;105: 88–97. © 2009 Wiley Periodicals, Inc.  相似文献   

15.
Agroindustrial residues are materials often rich in cellulose and hemicellulose. The use of these substrates for the microbial production of enzymes of industrial interest is mainly due to their high availability associated with their low cost. In this work, corncob (CCs) particles decomposed to soluble compounds (liquor) were incorporated in the microbial growth medium through autohydrolysis, as a strategy to increase and undervalue xylanase and β-xylosidase production by Aspergillus terricola and Aspergillus ochraceus. The CCs autohydrolysis liquor produced at 200 °C for 5, 15, 30 or 50 min was used as the sole carbon source or associated with untreated CC. The best condition for enzyme synthesis was observed with CCs submitted to 30 min of autohydrolysis. The enzymatic production with untreated CCs plus CC liquor was higher than with birchwood xylan for both microorganisms. A. terricola produced 750 total U of xylanase (144 h cultivation) and 30 total U of β-xylosidase (96-168 h) with 0.75% untreated CCs and 6% CCs liquor, against 650 total U of xylanase and 2 total U of β-xylosidase in xylan; A. ochraceus produced 605 total U of xylanase and 56 total U of β-xylosidase (168 h cultivation) with 1% untreated CCs and 10% CCs liquor against 400 total U of xylanase and 38 total U of β-xylosidase in xylan. These results indicate that the treatment of agroindustrial wastes through autohydrolysis can be a viable strategy in the production of high levels of xylanolytic enzymes.  相似文献   

16.
Sorghum straw is a waste that has been studied scarcely. The main application is its use as raw material for xylose production. Xylose is a hemicellulosic sugar mainly used for its bioconversion toward xylitol. An alternative use could be its conversion toward furfural. The objective of this work was to study the furfural production by hydrolysis of sorghum straw with phosphoric acid at 134 degrees C. Several concentrations of H(3)PO(4) in the range 2-6% and reaction time (range 0-300 min) were evaluated. Kinetic parameters of mathematical models for predicting the concentration of xylose, glucose, arabinose, acetic acid and furfural in the hydrolysates were found. Optimal conditions for furfural production by acid hydrolysis were 6% H(3)PO(4) at 134 degrees C for 300 min, which yielded a solution with 13.7 g furfural/L, 4.0 g xylose/L, 2.9 g glucose/L, 1.1g arabinose/L and 1.2g acetic acid/L. The furfural yield of the process was 0.1336 g furfural/g initial dry matter was obtained. The results confirmed that sorghum straw can be used for furfural production when it is hydrolyzed using phosphoric acid.  相似文献   

17.
Twenty-four non-isothermal wheat straw autohydrolysis experiments were performed in a batch reactor in order to support the development of a new kinetic model. An optimum of 76% w/w total xylose was obtained due to 5% w/w xylose degradation at 180 °C for 70 min. An optimum of 31% w/w total glucose was obtained due to 22% w/w glucose degradation at 240 °C for 82 min. The autohydrolysis of cellulose and hemicelluloses was simulated using a new kinetic model, in which a new phenomenological first-order reaction was introduced to take into account the increasing concentration of acids that are produced during the complex cascade of reactions. The new model simulated experimental results more accurately than the severity factor (R0) model.  相似文献   

18.
This work provides an assessment on the hydrothermal processing (or autohydrolysis treatments) of two lignocellulosic wastes: mixed herbs (denoted MH, mainly belonging to the Lolium species), and sunflower seed shells (denoted SS). Compositional data were obtained for both raw materials (which contained cellulose, heteroxylan and Klason lignin as major components). In autohydrolysis experiments, the raw materials presented a “susceptible fraction” which was solubilized according to a first-order kinetics. Hemicellulose degradation was followed by determination of xylooligomers, xylose and xylan substituents (arabinosyl, uronic acid and acetyl substituents). Kinetic modelling of hemicellulose degradation was carried out considering four consecutive, first-order, pseudohomogeneous reactions. The molecular weight distribution of polymeric and oligomeric fractions derived from xylan was assessed from High Performance Size Exclusion Chromatography data.  相似文献   

19.
Study of extraction of astaxanthin from giant tiger (Panaeus monodon) shrimp waste using palm oil was conducted to determine the extraction kinetics and thermodynamic parameters. Two extraction models were proposed: mass transfer kinetic model and reaction kinetic model. It was found that both of mass transfer and reaction kinetic control the extraction of astaxanthin from shrimp waste using palm oil. The thermodynamic parameters of extraction were also obtained in this study.  相似文献   

20.
A two-stage hybrid fractionation process was investigated to produce cellulosic ethanol and furfural from corn stover. In the first stage, zinc chloride (ZnCl2) was used to selectively solubilize hemicellulose. During the second stage, the remaining treated solids were converted into ethanol using commercial cellulase and Saccharomyces cerevisiae or recombinant Escherichia coli, KO11. This hybrid fractionation process recovered 93.8% of glucan, 89.7% of xylan, 71.1% of arabinan, and 74.9% of lignin under optimal reaction conditions (1st stage: 5% acidified ZnCl2, 7.5 ml/min, 150 °C (10 min) and 170 °C (10 min); 2nd stage: simultaneous saccharification and fermentation (SSF) using S. cerevisiae). The furfural yield from the hemicellulose hydrolysates was 58%. The SSF of the treated solids resulted in 69–98% of the theoretical maximum ethanol yields based on the glucan content in the treated solids. After fermentation, the solid residues contained primarily lignin. Based on the total lignin in untreated corn stover, the lignin recovery yield was 74.9%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号