首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An abnormal fluorescence emission of protein was observed in the 33-kDa protein which is one component of the three extrinsic proteins in spinach photosystem II particle (PS II). This protein contains one tryptophan and eight tyrosine residues, belonging to a "B type protein". It was found that the 33-kDa protein fluorescence is very different from most B type proteins containing both tryptophan and tyrosine residues. For most B type proteins studied so far, the fluorescence emission is dominated by the tryptophan emission, with the tyrosine emission hardly being detected when excited at 280 nm. However, for the present 33-kDa protein, both tyrosine and tryptophan fluorescence emissions were observed, the fluorescence emission being dominated by the tyrosine residue emission upon a 280 nm excitation. The maximum emission wavelength of the 33-kDa protein tryptophan fluorescence was at 317 nm, indicating that the single tryptophan residue is buried in a very strong hydrophobic region. Such a strong hydrophobic environment is rarely observed in proteins when using tryptophan fluorescence experiments. All parameters of the protein tryptophan fluorescence such as quantum yield, fluorescence decay, and absorption spectrum including the fourth derivative spectrum were explored both in the native and pressure-denatured forms.  相似文献   

2.
Low temperature (77°K) fluorescence emission and excitation spectra were recorded for wet and desiccated thalli of Porphyra perforata . The photosystem I (F730) and photosystem II (F695) fluorescence emission kinetics during photosystem II trap closure were also recorded at 77°K. Desiccation induced a lowering of the fluorescence yield over the whole emission spectrum but the decrease was most pronounced for the photosystem II fluorescence bands, F688 and F695. It was shown that the desiccation-induced changes of the phycoerythrin sensitized emission spectrum were due to 1) a decrease in the fluorescence yield of the photosystem I antenna, 2) an even stronger decrease in the fluorescence of photosystem II, which was mediated by an increased spillover (kT(II→I)) of excitation to photosystem I and an increase in the absorption cross section, α, for photosystem I. We hypothesize that the increase of both kT(II→I) and α are part of a mechanism by which the desiccation-tolerant, high light exposed, Porphyra can avoid photodynamic damage to photosystem II, when photosynthesis becomes inhibited as a result of desiccation during periods of low tide.  相似文献   

3.
Protochlorophyll forms in roots of dark-grown plants   总被引:1,自引:0,他引:1  
Protochlorophyll was found in roots of dark-grown plants of seven species investigated. It was identified by absorbance and fluorescence spectra of acetone and ether extracts. Chlorophyll was also found in roots of one pea species. The concentration of protochlorophyll was usually highest in young root tips and decreased upwards along the roots. The maxima of the in vivo absorbance spectra of the species studied varied between 634 and 638 nm. Low temperature in vivo fluorescence emission spectra had two maxima, one at ca 633 and the other at ca 642 nm, when the wavelengths of the excitation light were 440 and 460 nm, respectively. In vivo fluorescence excitation spectra displayed a shift of the excitation maximum from 438 to 445 nm, when emission varied from 620 to 647.5 nm. Deconvolution of these three types of spectra into Gaussian components made it possible to identify two spectral forms of protochlorophyll: protochlorophyll629–633 and protochlorophyll638–642.  相似文献   

4.
Time-resolved and steady-state fluorescence have been used to resolve the heterogeneous emission of single-tryptophan-containing mutants of Trp repressors W19F and W99F into components. Using iodide as the quencher, the fluorescence-quenching-resolved spectra (FQRS) have been obtained The FQRS method shows that the fluorescence emission of Trp99 can be resolved into two component spectra characterized by maxima of fluorescence emission at 338 and 328 nm. The redder component is exposed to the solvent and participates in about 21% of the total fluorescence emission of TrpR W19F. The second component is inacessible to iodide, but is quenched by acrylamide. The tryptophan residue 19 present in TrpR W99F can be resolved into two component spectra using the FQRS method and iodide as a quencher. Both components of Trp19 exhibit similar maxima of emission at 322–324 nm and both are quenchable by iodide. The component more quenchable by iodide participates in about 38% of the total TrpR W99F emission. The fluorescence lifetime measurements as a function of iodide concentration support the existence of two classes of Trp99 and Trp19 in the Trp repressor. Our results suggest that the Trp aporepressor can exist in the ground state in two distinct conformational states which differ in the microenvironment of the Trp residues.Abbreviations TrpR tryptophan aporepressor fromE. coli - TrpR W19F TrpR mutant with phenylalanine substituted for tryptophan at position 19 - TrpR W99F TrpR mutant with phenylalanine substituted for tryptophan at position 99 - FQRS fluorescence-quenching-resolved spectra - FPLC fast protein liquid chromatography  相似文献   

5.
The detection of submonolayers of proteins based on native fluorescence is a potentially valuable approach for label-free detection. We have examined the possibility of using silver nanostructures to increase the emission of tryptophan residues in proteins. Fluorescence spectra, intensities, and lifetimes of multilayers and submonolayers of proteins deposited on the surfaces of silver island films were measured. Increased fluorescence intensities from two- to three-fold and similar decreases in lifetimes were observed in the presence of the silver nanoparticles compared with the proteins on the surface of the bare quartz. The observed spectral effects of silver nanoparticles on tryptophan fluorescence indicates the possibility for the design of analytical tools for the detection of proteins without traditional labeling by extrinsic fluorophores.  相似文献   

6.
The relation between the different protochlorophyllide (PChlide) forms in isolated etioplast inner membranes was dependent on the concentration of sucrose and NADPH in the isolation media. Etioplasts were prepared from wheat ( Triticum aestivum L. cv. Starke II, Weibull) by differential centrifugation. The etioplasts were freed of envelope and stroma and the etioplast inner membranes were exposed to a concentration series of sucrose. Fluorescence emission spectra revealed a positive correlation between the emission ratio 657/633 nm and the sucrose concentration in which the membranes were suspended. Addition of NADPH prevented the degradation of 657 nm emission caused by low sucrose concentrations. PChlide already altered to PChide628–632 could not re-form PChlide650–657 after the addition of NADPH in darkness. Prolamellar bodies and prothylakoids were separated in a bottom-loaded sucrose density gradient in the presence of NADPH. The dominating PChlide-protein complex in the prolamellar bodies was PClide650–657. Only minor amounts of PChlide628–632 were found in these membranes. The prothylakoids had a higher content of PChlide628–632, relative to PChlide650–657, than the prolamellar bodies, as judged from absorption and fluorescence spectra. After phototransformation the fluorescence emission at 633 nm increased relative to the emission from phototransformed PChlide indicating an efficient energy transfer between PChlide628–632 and PChlide650–657 before irradiation.  相似文献   

7.
The dependence of fluorescence emission maxima ofl-tryptophan and single-tryptophan-containing proteins (ribonuclease T1, melittin, and parvalbumin) on excitation wavelength has been studied in reversed micelle systems of sodium bis(2-ethyl-1-oxyl) sulfosuccinate (AOT). No effect of fluorescence maximum shift for different excitation wavelengths is observed for ribonuclease T1, in which a single tryptophan residue is located in the nonrelaxating, nonpolar protein interior.l-Tryptophan and the rest of the studied proteins, which contain single tryptophan residues exposed to the solvent, exhibit the dipolar relaxational processes of partly immobilized water molecules in micelles. This effect depends on the molar H2O/AOT ratio. Circular dichroism measurements prove that there have been no structural changes of the studied proteins in micellar systems. The results provide information about dynamic relaxational processes in proteins.  相似文献   

8.
Fluorescence measurements of the homologous proteins, notexin and PLA2 enzymes fromNaja naja atra, Naja nigricollis, and Hemachatus haemachatus venoms, showed that the wavelength of maximum emission and the quantum yield of their intrinsic fluorescence emission spectra were different. To verify the factors which affected their fluorescence characteristics, the dynamics of tryptophan residues in those homologous proteins were studied by quenching with acrylamide, iodide, and cesium. The degrees of exposure of tryptophanyl groups in notexin and PLA2 enzymes assessed by acrylamide quenching were found to be the major factor that determined their fluorescence characteristics. However, the positively charged groups surrounding tryptophan residues of PLA2 enzymes fromN. naja atra andN. nigricollis venoms might affect the quantum yield of their fluorophores. Tryptophan residues of notexin were in an environment with less fluctuation, which did not allow free diffusion of ionic quencher. This might render its typtophan residues to fluoresce at a shorter wavelength. These results suggested that the structural determinants affecting the intrinsic fluorescence emission of homologous proteins can be easily assessed by quenching studies.  相似文献   

9.
Low-temperature fluorescence emission spectra of 6.5-day-old dark-grown epicotyls of pea ( Pisum sativum ) revealed the presence of protochlorophyll(ide). The upper part of the epicotyl contained 30% of the protochlorophyll(ide) content per fresh weight found in pea leaves, whereas the lower part contained 3%. Three discrete spectral forms of protochlorophyll(ide) were clearly distinguished after Gaussian deconvolution of fluorescence excitation and emission spectra. Adding the satellite bands of the Qy(0-0) transitions (the emission vibrational (Emv) bands with correlated amplitudes, gave the following delineation: Ex439–Em629–Emv684, Ex447–Em636–Emv700 and Ex456–Em650–Emv728. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) followed by immunodetection of whole tissue extracts of the epicotyl indicated the presence of NADPH-protochlorophyllide oxidoreductase (EC 1.3.1.33). Electron micrographs showed prolamellar bodies in at most 11 % of the plastid profiles of the epicotyl cells. These prolamellar bodies were smaller, and many of them showed less regular structure than those of the leaves. Taken together, the results indicate that the protochlorophyll(ide) in epicotyls is arranged in a different way than in leaves.  相似文献   

10.
The structure of (Deibler) myelin basic protein in solution and in a lysolecithin lipid complex has been studied by using the emission properties of the single tryptophan residue of the protein (Trp-115). The studies have been carried out using both static and time-resolved fluorescence techniques. Relative to the free protein, the lipid bound myelin basic protein showed a, twofold increase in fluorescence intensity and a marked blue-shift in the emission maximum wavelength. The multiexponential fluorescence decays and the decay associated spectra indicated that the protein exists in at least three different conformations both in buffer and in lipids. Fluorescence polarization and acrylamide quenching experiments showed that the tryptophan containing region of the protein is embedded in the lipid matrix. The binding of the protein to the lipid appears to be comparable with that predicted for the interaction of amphipathic helices with nonpolar lipids.  相似文献   

11.
Second-derivative spectroscopy has been applied to the study of the fluorescence of aromatic amino acids. The spectral features of the second derivative emission spectra of free aromatic amino acids and proteins are described, the emission of each aromatic fluorophore being characterized by a particular minimum-maximum pair. An easy, accurate, and rapid method is proposed for the quantitative determination of tyrosine and tryptophan, based on the addition of small amounts of a standard solution to the samples followed by the measurement of the increase in the distance between a selected minimum and an adjacent maximum, in the second-derivative spectrum. For tyrosine determination, excitation wavelength was 275 nm, and the selected minimum-maximum (m,M) pair was (300; 330 nm), while an excitation of 300 nm and a minimum-maximum pair (357; 377 nm) were employed for the tryptophan determination. This method enables the tryptophan content of proteins to be determined directly, without the need for correction for the presence of tyrosine. The tyrosine content of proteins can also be determined at neutral pH, in the presence of both tryptophan and phenylalanine. The proposed method has also been applied to trypsin activation of frog epidermis tyrosinase.  相似文献   

12.
Monitoring the fluorescence of proteins, particularly the fluorescence of intrinsic tryptophan residues, is a popular method often used in the analysis of unfolding transitions (induced by temperature, chemical denaturant, and pH) in proteins. The tryptophan fluorescence provides several suitable parameters, such as steady‐state fluorescence intensity, apparent quantum yield, mean fluorescence lifetime, position of emission maximum that are often utilized for the observation of the conformational/unfolding transitions of proteins. In addition, the fluorescence intensities ratio at different wavelengths (usually at 330 nm and 350 nm) is becoming an increasingly popular parameter for the evaluation of thermal transitions. We show that, under certain conditions, the use of this parameter for the analysis of unfolding transitions leads to the incorrect determination of thermodynamic parameters characterizing unfolding transitions in proteins (e.g., melting temperature) and, hence, can compromise the hit identification during high‐throughput drug screening campaigns.  相似文献   

13.
Yasuo Suzuki  Atusi Takamiya 《BBA》1972,275(3):358-368
Time courses and the emission spectra of fluorescence and light-induced absorption changes of P890 in chromatophores of the photosynthetic bacteria Chromatium D, Rhodopseudomonas spheroides and Rhodospirillum rubrum were investigated.

The time course of fluorescence in chromatophores was separated into two phases, i.e. an initial rapid rise (ƒi) and a subsequent slow increase towards a steady level of emission (ƒv). The ƒi and the ƒv components showed different emission spectra having different peak position. The ƒv component was emitted from the longest wavelength-absorbing form of bulk bacteriochlorophyll (B890), the ƒi component from both B890 and B850.

The magnitude of the ƒv component depended on experimental conditions controlling the states of the cyclic electron transport in chromatophores, including changes in levels of redox potential of the medium, additions of electron donors and inhibitors. The magnitude of the ƒi component was not affected by these experimental conditions. It was, therefore, concluded that only the ƒv component is related to the cyclic electron transport, and that the magnitude of ƒv is controlled by the oxidation-reduction state of the primary electron acceptor for the photochemical reaction center in chromatophores.  相似文献   


14.
Fluorescence and absorption spectra were used to study the temperature effect on theconformation of bacteriorhodopsin (bR) in the blue and purple membranes (termed as bRb and bRprespectively).The maximum emission wavelengths of tryptophan fluorescence in both proteins at roomtemperature are 340 nm,and the fluorescence quantum yield of bRb is about 1.4 fold higher than that of bRp.As temperature increases,the tryptophan fluorescence of bRb decreases,while the tryptophan fluorescenceof bRp increases.The binding study of extrinsic fluorescent probe bis-ANS indicated that the probe can bindonly to bRb,but not to bRp.These results suggest that significant structural difference existed between bRband bRp.It was also found that both kinds of bR are highly thermal stable.The maximum wavelength of theprotein fluorescence emission only shifted from 340 nm to 346 nm at 100℃.More interestingly,as tempera-ture increased,the characteristic absorption peak of bRb at 605 nm decreased and a new absorption peak at380 nm formed.The transition occurred at a narrow temperature range (65℃-70℃).These facts indicatedthat an intermediate can be induced by high temperature.This phenomenon has not been reported before.  相似文献   

15.
Fluorescence-quenching-resolved spectroscopy of proteins   总被引:3,自引:0,他引:3  
A new procedure is described for using fluorescence-quenching data of tryptophan residues in proteins to resolve their fluorescence emission spectra. In this concept the Stern-Volmer quenching plot is determined at each particular emission wavelength and iterative non-linear least-squares fitting procedure allowed to resolve the steady-state emission spectra into components. The resolved components, attributed to each of tryptophan residue, can be characterized by different accessibility to the quencher. The ability to resolve fluorescence emission spectra can be improved by using different kinds of efficient quenchers, which can selectively quench the emission of exposed or both exposed and buried fluorophores. The method was used to decompose emission fluorescence spectra in two-tryptophan-containing proteins; horse liver dehydrogenase, sperm whale apomyoglobin and metalloprotease from Staphylococcus aureus. The resolved spectra of alcohol dehydrogenase and metalloprotease are in excellent agreement with those previously obtained by single-photon counting or phase methods. The method presented here is technically simple and does not require expensive instrumentation.  相似文献   

16.
The circular polarization of the luminescence of a chromophore, in addition to its circular dichroism and optical rotatory dispersion, is a manifestation of its asymmetry. In the study of proteins, the circular polarization of luminescence yields more specific information than circular dichroism or optical rotatory dispersion since nonfluorescent chromophores do not contribute, and the spectra of the tyrosine and the tryptophan residues are much better resolved in emission than in absorption. The circular polarization of the fluorescence of the tyrosine and tryptophan residues in derivatives of subtilisin Carlsberg and subtilisin Novo were indeed resolved in this study. The tyrosine residues in the Carlsberg protein, and both tyrosine and tryptophan residues in the Novo protein, were found to be heterogeneous with respect to their optical activity and emission spectra. Changes in the environment of the emitting tyrosine residues in both proteins and in the tryptophan residues in the Novo protein were found on changing the pH from 5.0 to 8.3. The pH dependence of the enzymatic activity of these proteins may thus be due, at least in part, to conformational changes in the molecules. Fluorescence circular polarization also revealed that covalently bound inhibitors at the active site of subtilisin Novo affect the environment of the emitting aromatic side chains, presumably via changes in conformation.  相似文献   

17.
褐藻裙带菜色素蛋白复合物的性质*   总被引:1,自引:0,他引:1  
用去污剂DMG增溶褐藻裙带菜(Undaria pinnatifida)的类囊体膜,通过PAGE分离色素-蛋白复合物并分析其性质,结果表明:CPⅠa和CPⅠ都含有66kDa的多肽,低温荧光发射光谱中有715nm的长波荧光峰,激发光谱测定结果表明CPⅠa是含有墨角藻黄素的叶绿素a/c-蛋白复合物,CPⅠ是只含有叶绿素a的色素-蛋白复合物。CPa含有51、37、34和20kDa四种多肽,低温荧光发射峰位于683nm,激发光谱表明它含有叶绿素a、c和少量墨角藻黄素,是裙带菜的PSⅠ复合物。其余5条为捕光色素-蛋白复合物,它们都是由20kDa的多肽组成,其中LHC1和LHC3有相似的光谱特性,是墨角藻黄素-叶绿素a/c-蛋白复合物,LHC2、LHC4和LHC5的光谱特性相似,是叶绿素a/c-蛋白复合物。  相似文献   

18.
The absorption and energy transfer between pigments in Nostoc muscorum by the action of 10(-4) M Cd2+, when the cyanobacterium remains viable, and in the presence of 10(-3) M Cd2+, which causes the death of cells during 3-4 weeks of incubation, were studied. A comparative study by the methods of absorption and fluorescence spectrophotometry at 295 and 77 K, including derivative spectroscopy and deconvolution of emission spectra into a number of Gaussian components, showed that, in the presence of 10(-4) M Cd2+, the energy transfer from phycobilisomes to chlorophyll of photosystem I increased. After incubation with 10(-3) M Cd2+, the energy transfer from phycobilisomes to chlorophyll of photosystem II decreased, and the transfer to photosystem I was absent. New bands in the absorption spectra, in the second derivative of absorption spectra, and in the fluorescence spectra at 77 K of cyanobacterium were observed after 7 days of incubation with cadmium. We belive that these bands are due to the formation of CdS particles and Cd-pigment complexes. The conclusion about the dual effect of Cd2+ on the functioning of the energy transfer chain in N. muscorum was derived.  相似文献   

19.
W. J. Vredenberg  L. Slooten 《BBA》1967,143(3):583-594
1. Comparative studies were made on the fluorescence characteristics of chlorophyll a at 20° and −193°, and quantum efficiencies for P 700 oxidation and NADP+ reduction were measured in chloroplasts and chloroplast fragments obtained after incubation with 0.5% digitonin.

2. Differences in the flurescence yield of chlorophyll a in flowing and stationary suspensions of untreated chloroplasts and of the large fragments are indicative of light-induced photoreduction of the quencher Q of chlorophyll a, associated with pigment System 2 (chlorophyll a2). The relatively low constant fluorescence yield of chlorophyll a in the small fragments indicates the absence of fluorescent chlorophyll a2 from these fragments and suggests that the low fluorescence is due to chlorophyll a, associated with pigmen System 1 (chlorophyll a1). The ratio of the fluorescence yields of chlorophyll a1 and chlorophyll a2 is 0.45:1. In the large particles the concentration ratio of pigment System 1 and System 2 is 1:3.

3. The efficiencies of quanta absorbed at 673, 683 and 705 nm for NADP+ reduction and P 700 oxidation in untreated chloroplasts and chloroplast fragments indicate that digitonin treatment results in a separation of System 2 from System 1 in the small fragments. Sonication does not cause such a separation. Under the conditions used P 700 oxidation and NADP+ reduction in the small fragments separated after digitonin treatment, occurred with maximal efficiency of 0.7 to 1.0 and 0.7, respectively.

4. The constancy of the fluorescence yield of chlorophyll a1 in the small fragments, under conditions at which P 700 is oxidized and NADP+ is reduced, is interpreted as evidence either for the hypothesis that the fluorescence of chlorophyll a1 is controlled by the redox state of the primary photoreductant XH, or alternatively for the hypothesis that energy transfer from fluorescent chlorophyll a1 to P 700 goes via an intrinsically weak fluorescent, still unknown, chlorophyll-like pigment.

5. The low-temperature emission band around 730 nm is argued not to be due to excitation by System 1 only; the relatively large half width of the band, as compared to the emission bands at 683 and 696 nm, suggests that it is possibly due to overlapping emission bands of different pigments.  相似文献   


20.
Sugars are known to stabilize proteins. This study addresses questions of the nature of sugar and proteins incorporated in solid sugar films. Infrared (IR) and Raman spectroscopy was used to examine trehalose and sucrose films and glycerol/water solvent. Proteins and indole-containing compounds that are imbedded in the sugar films were studied by IR and optical (absorption, fluorescence, and phosphorescence) spectroscopy. Water is able to move in the sugar films in the temperature range of 20-300 K as suggested by IR absorption bands of HOH bending and OH stretching modes that shift continuously with temperature. In glycerol/water these bands reflect the glass transition at approximately 160 K. The fluorescence of N-acetyl-L-tryptophanamide and tryptophan of melittin, Ca-free parvalbumin, and staphylococcal nuclease in dry trehalose/sucrose films remains broad and red-shifted over a temperature excursion of 20-300 K. In contrast, the fluorescence of these compounds in glycerol/water solvent shift to the blue as temperature decreases. The fluorescence of the buried tryptophan in Ca-bound parvalbumin in either sugar film or glycerol/water remains blue-shifted and has vibronic resolution over the entire temperature range. The red shift for fluorescence of indole groups exposed to solvent in the sugars is consistent with the motion of water molecules around the excited-state molecule that occurs even at low temperature, although the possibility of static complex formation between the excited-state molecule and water or other factors is discussed. The phosphorescence yield for protein and model indole compounds is sensitive to the matrix glass transition. Phosphorescence emission spectra are resolved and shift little in different solvents or temperature, as predicted by the small dipole moment of the excited triplet state molecule. The conclusion is that the sugar film maintains the environment present at the glass formation temperature for surface Trp and amide groups over a wide temperature excursion. In glycerol/water these groups reflect local changes in the environment as temperature changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号