首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glycosphingolipid GM1 binds cholera toxin (CT) on host cells and carries it retrograde from the plasma membrane (PM) through endosomes, the trans-Golgi (TGN), and the endoplasmic reticulum (ER) to induce toxicity. To elucidate how a membrane?lipid can specify trafficking in these pathways, we synthesized GM1 isoforms with alternate ceramide domains and imaged their trafficking in live cells.?Only GM1 with unsaturated acyl chains sorted efficiently from PM to TGN and ER. Toxin binding, which effectively crosslinks GM1 lipids, was dispensable, but membrane cholesterol and the lipid raft-associated proteins actin and flotillin were required. The results implicate a protein-dependent mechanism of lipid sorting by ceramide structure and provide a molecular explanation for the diversity?and specificity of retrograde trafficking by CT in?host cells.  相似文献   

2.
Cholera toxin (CT), and members of the AB(5) family of toxins enter host cells and hijack the cell's endogenous pathways to induce toxicity. CT binds to a lipid receptor on the plasma membrane (PM), ganglioside GM1, which has the ability to associate with lipid rafts. The toxin can then enter the cell by various modes of receptor-mediated endocytosis and traffic in a retrograde manner from the PM to the Golgi and the endoplasmic reticulum (ER). Once in the ER, a portion of the toxin is unfolded and retro-translocated to the cytosol so as to induce disease. GM1 is the vehicle that carries CT from PM to ER. Thus, the toxin pathway from PM to ER is a lipid-based sorting pathway, which is potentially meditated by the determinants of the GM1 ganglioside structure itself.  相似文献   

3.
Cholera toxin (CT) and related AB5-subunit toxins move from the plasma membrane through the trans-Golgi and endoplasmic reticulum (ER) to the cytosol of host cells. The toxins exploit a specific glycolipid pathway rather than a protein pathway. They bind glycolipids that associate with lipid rafts at the cell surface, which carry the toxins retrograde to the Golgi and ER. In the ER, the A1-chain of the CT unfolds and enters the cytosol by hijacking the cellular machinery that enables misfolded proteins to cross the membrane for degradation by the proteasome, a process termed retro-translocation. Upon entering the cytosol, the A1-chain rapidly refolds, avoids the proteasome and induces toxicity.  相似文献   

4.
Cholera toxin causes diarrheal disease by binding ganglioside GM1 on the apical membrane of polarized intestinal epithelial cells and trafficking retrograde through sorting endosomes, the trans-Golgi network (TGN), and into the endoplasmic reticulum. A fraction of toxin also moves from endosomes across the cell to the basolateral plasma membrane by transcytosis, thus breeching the intestinal barrier. Here we find that sorting of cholera toxin into this transcytotic pathway bypasses retrograde transport to the TGN. We also find that GM1 sphingolipids can traffic from apical to basolateral membranes by transcytosis in the absence of toxin binding but only if the GM1 species contain cis-unsaturated or short acyl chains in the ceramide domain. We found previously that the same GM1 species are needed to efficiently traffic retrograde into the TGN and endoplasmic reticulum and into the recycling endosome, implicating a shared mechanism of action for sorting by lipid shape among these pathways.  相似文献   

5.
Intestinal epithelial lipid rafts contain ganglioside GM1 that is the receptor for cholera toxin (CT). The ganglioside binds CT at the plasma membrane (PM) and carries the toxin through the trans-Golgi network (TGN) to the endoplasmic reticulum (ER). In the ER, a portion of the toxin unfolds and translocates to the cytosol to activate adenylyl cyclase. Activation of the cyclase leads to an increase in intracellular cAMP, which results in apical chloride secretion. Here, we find that an intact actin cytoskeleton is necessary for the efficient transport of CT to the Golgi and for subsequent activation of adenylyl cyclase. CT bound to GM1 on the cell membrane fractionates with a heterogeneous population of lipid rafts, a portion of which is enriched in actin and other cytoskeletal proteins. In this actin-rich fraction of lipid rafts, CT and actin colocalize on the same membrane microdomains, suggesting a possible functional association. Depolymerization or stabilization of actin filaments interferes with transport of CT from the PM to the Golgi and reduces the levels of cAMP generated in the cytosol. Depletion of membrane cholesterol, which also inhibits CT trafficking to the TGN, causes displacement of actin from the lipid rafts while CT remains stably raft associated. On the basis of these observations, we propose that the CT-GM1 complex is associated with the actin cytoskeleton via the lipid rafts and that the actin cytoskeleton plays a role in trafficking of CT from the PM to the Golgi/ER and the subsequent activation of adenylyl cyclase. membrane microdomains; membrane lipids; bacterial toxins; endocytosis; intestinal mucosa  相似文献   

6.
Cholera toxin (CT) travels from the plasma membrane of intestinal cells to the endoplasmic reticulum (ER) where a portion of the A-subunit, the A1 chain, crosses the membrane into the cytosol to cause disease. A related toxin, LTIIb, binds to intestinal cells but does not cause toxicity. Here, we show that the B-subunit of CT serves as a carrier for the A-subunit to the ER where disassembly occurs. The B-subunit binds to gangliosides in lipid rafts and travels with the ganglioside to the ER. In many cells, LTIIb follows a similar pathway, but in human intestinal cells it binds to a ganglioside that fails to associate with lipid rafts and it is sorted away from the retrograde pathway to the ER. Our results explain why LTIIb does not cause disease in humans and suggest that gangliosides with high affinity for lipid rafts may provide a general vehicle for the transport of toxins to the ER.  相似文献   

7.
Cholera and the related AB(5)-subunit toxins co-opt plasma membrane (PM) glycolipids to move retrograde into the endoplasmic reticulum (ER) of the host cell where a portion of the toxin is retro-translocated to the cytosol to induce disease. Only glycolipids that associate strongly with detergent insoluble membrane microdomains can sort the toxins backwards from PM to ER. The way certain lipids and proteins are clustered in the plane of the membrane to form lipid rafts likely explains how the glycolipids can function as sorting motifs for the toxins.  相似文献   

8.
In nature, cholera toxin (CT) and the structurally related E. coli heat labile toxin type I (LTI) must breech the epithelial barrier of the intestine to cause the massive diarrhea seen in cholera. This requires endocytosis of toxin-receptor complexes into the apical endosome, retrograde transport into Golgi cisternae or endoplasmic reticulum (ER), and finally transport of toxin across the cell to its site of action on the basolateral membrane. Targeting into this pathway depends on toxin binding ganglioside GM1 and association with caveolae-like membrane domains. Thus to cause disease, both CT and LTI co-opt the molecular machinery used by the host cell to sort, move, and organize their cellular membranes and substituent components.  相似文献   

9.
Many studies have investigated the intracellular trafficking of Shiga toxin, but very little is known about the underlying dynamics of its cellular receptor, the glycosphingolipid globotriaosyl ceramide. In this study, we show that globotriaosyl ceramide is required not only for Shiga toxin binding to cells, but also for its intracellular trafficking. Shiga toxin induces globotriaosyl ceramide recruitment to detergent-resistant membranes, and subsequent internalization of the lipid. The globotriaosyl ceramide pool at the plasma membrane is then replenished from internal stores. Whereas endocytosis is not affected in the recovery condition, retrograde transport of Shiga toxin to the Golgi apparatus and the endoplasmic reticulum is strongly inhibited. This effect is specific, as cholera toxin trafficking on GM(1) and protein biosynthesis are not impaired. The differential behavior of both toxins is also paralleled by the selective loss of Shiga toxin association with detergent-resistant membranes in the recovery condition, and comparison of the molecular species composition of plasma membrane globotriaosyl ceramide indicates subtle changes in favor of unsaturated fatty acids. In conclusion, this study demonstrates the dynamic behavior of globotriaosyl ceramide at the plasma membrane and suggests that globotriaosyl ceramide-specific determinants, possibly its molecular species composition, are selectively required for efficient retrograde sorting on endosomes, but not for endocytosis.  相似文献   

10.
In polarized cells, signal transduction by cholera toxin (CT) requires apical endocytosis and retrograde transport into Golgi cisternae and perhaps ER (Lencer, W.I., C. Constable, S. Moe, M. Jobling, H.M. Webb, S. Ruston, J.L. Madara, T. Hirst, and R. Holmes. 1995. J. Cell Biol. 131:951–962). In this study, we tested whether CT's apical membrane receptor ganglioside GM1 acts specifically in toxin action. To do so, we used CT and the related Escherichia coli heat-labile type II enterotoxin LTIIb. CT and LTIIb distinguish between gangliosides GM1 and GD1a at the cell surface by virtue of their dissimilar receptor-binding B subunits. The enzymatically active A subunits, however, are homologous. While both toxins bound specifically to human intestinal T84 cells (Kd ≈ 5 nM), only CT elicited a cAMP-dependent Cl secretory response. LTIIb, however, was more potent than CT in eliciting a cAMP-dependent response from mouse Y1 adrenal cells (toxic dose 10 vs. 300 pg/well). In T84 cells, CT fractionated with caveolae-like detergent-insoluble membranes, but LTIIb did not. To investigate further the relationship between the specificity of ganglioside binding and partitioning into detergent-insoluble membranes and signal transduction, CT and LTIIb chimeric toxins were prepared. Analysis of these chimeric toxins confirmed that toxin-induced signal transduction depended critically on the specificity of ganglioside structure. The mechanism(s) by which ganglioside GM1 functions in signal transduction likely depends on coupling CT with caveolae or caveolae-related membrane domains.  相似文献   

11.
The bulk flow model of intracellular trafficking predicts that forward transport from the ER through the Golgi to the plasma membrane proceeds by default without a special signal being required (Wieland, F.T., Gleason, M. L., Serafini, T. A., and Rothman, J. E. (1987) Cell 50, 289-300). We tested a crucial prediction of this model, which is that the endogenous lipid components of the transport vesicles would reach the plasma membrane at the rapid rate of bulk flow. The rate at which endogenous glycosphingolipids moved from the ER through the Golgi to the plasma membrane was determined in Chinese hamster ovary cells using metabolic labeling with tritiated palmitate and oxidation of cell surface ganglioside NeuAc alpha 2----3Gal beta 1----4Glc beta 1----4Cer (GM3) with periodate. Whereas radioactive precursor became incorporated into ceramide and glucosyl ceramide without a detectable lag, synthesis of labeled lactosyl ceramide and ganglioside GM3 did not begin until 5-6 min and 11-12 min, respectively, after addition of labeled precursor. Labeled GM3 reached the plasma membrane 5-6 min following its synthesis. Overall, approximately 18 min transpired from the time that the ceramide precursor was synthesized in the ER until labeled GM3 reached the plasma membrane. These results indicate that lipid transport vesicles move rapidly to the plasma membrane at a rate consistent with bulk flow estimates.  相似文献   

12.
Cholera toxin (CT) and related AB(5) toxins bind to glycolipids at the plasma membrane and are then transported in a retrograde manner, first to the Golgi and then to the endoplasmic reticulum (ER). In the ER, the catalytic subunit of CT is translocated into the cytosol, resulting in toxicity. Using fluorescence microscopy, we found that CT is internalized by multiple endocytic pathways. Inhibition of the clathrin-, caveolin-, or Arf6-dependent pathways by overexpression of appropriate dominant mutants had no effect on retrograde traffic of CT to the Golgi and ER, and it did not affect CT toxicity. Unexpectedly, when we blocked all three endocytic pathways at once, although fluorescent CT in the Golgi and ER became undetectable, CT-induced toxicity was largely unaffected. These results are consistent with the existence of an additional retrograde pathway used by CT to reach the ER.  相似文献   

13.
Abstract: Various glycolipid-binding toxins are internalized from the cell surface to the Golgi apparatus. Prominent among these is cholera toxin (CT), which consists of a pentameric B subunit that binds to ganglioside GM1 and an A subunit that mediates toxicity. We now demonstrate that rhodamine (Rh)-CT can be further internalized from the Golgi apparatus to the endoplasmic reticulum (ER) in cultured hippocampal neurons and in neuroblastoma N18TG-2 cells and that the A subunit is essential for retrograde transport to the ER. In addition, the rate of internalization of Rh-CT to the Golgi apparatus and ER decreases dramatically as hippocampal neurons mature. The Golgi apparatus was labeled in almost all 1-day-old neurons after <1 h of incubation with Rh-CT but was labeled in <10% of 14-day-old neurons after 1 h. During the first 14 days in culture, there was a 15-fold increase in the number of 125I-CT-binding sites per cell, indicating that the decrease in the rate of internalization of Rh-CT is not due to reduced levels of cell surface GM1 in older neurons. These results imply that the rate of retrograde transport of CT from the plasma membrane to the Golgi apparatus and ER is regulated during neuronal development and differentiation.  相似文献   

14.
Cholera toxin travels from the plasma membrane to the endoplasmic reticulum of host cells, where a portion of the toxin, the A1-chain, is unfolded and targeted to a protein-conducting channel for retrotranslocation to the cytosol. Unlike most retrotranslocation substrates, the A1-chain escapes degradation by the proteasome and refolds in the cytosol to induce disease. How this occurs remains poorly understood. Here, we show that an unstructured peptide appended to the N terminus of the A1-chain renders the toxin functionally inactive. Cleavage of the peptide extension prior to cell entry rescues toxin half-life and function. The loss of toxicity is explained by rapid degradation by the proteasome after retrotranslocation to the cytosol. Degradation of the mutant toxin does not follow the N-end rule but depends on the two Lys residues at positions 4 and 17 of the native A1-chain, consistent with polyubiquitination at these sites. Thus, retrotranslocation and refolding of the wild-type A1-chain must proceed in a way that protects these Lys residues from attack by E3 ligases.  相似文献   

15.
Cholera toxin (CT) produced by Vibrio cholerae is the virulence factor responsible for the massive secretory diarrhea seen in Asiatic cholera. To cause disease, CT enters the intestinal epithelial cell as a stably folded protein by co-opting a lipid-based membrane receptor, ganglioside G(M1). G(M1) sorts the toxin into lipid rafts and a retrograde trafficking pathway to the endoplasmic reticulum, where the toxin unfolds and transfers its enzymatic subunit to the cytosol, probably by dislocation through the translocon sec61p. The molecular determinants that drive entry of CT into this pathway are encoded entirely within the structure of the protein toxin itself.  相似文献   

16.
Cholera toxin (CT) is an AB5 toxin that moves from the cell surface to the endoplasmic reticulum (ER) by retrograde vesicular transport. In the ER, the catalytic A1 subunit dissociates from the rest of the toxin and enters the cytosol by exploiting the quality control system of ER-associated degradation (ERAD). The driving force for CTA1 dislocation into the cytosol is unknown. Here, we demonstrate that the cytosolic chaperone Hsp90 is required for CTA1 passage into the cytosol. Hsp90 bound to CTA1 in an ATP-dependent manner that was blocked by geldanamycin (GA), an established Hsp90 inhibitor. CT activity against cultured cells and ileal loops was also blocked by GA, as was the ER-to-cytosol export of CTA1. Experiments using RNA interference or N-ethylcarboxamidoadenosine, a drug that inhibits ER-localized GRP94 but not cytosolic Hsp90, confirmed that the inhibitory effects of GA resulted specifically from the loss of Hsp90 activity. This work establishes a functional role for Hsp90 in the ERAD-mediated dislocation of CTA1.  相似文献   

17.
De novo biosynthesis of sphingolipids begins in the endoplasmic reticulum (ER) and continues in the Golgi apparatus and plasma membrane. A crucial step in sphingolipid biosynthesis is the transport of ceramide by vesicular and non-vesicular mechanisms from its site of synthesis in the ER to the Golgi apparatus. The recent discovery of the ceramide transport protein CERT has revealed a novel pathway for the delivery of ceramide to the Golgi apparatus for sphingomyelin (SM) synthesis. In addition to a ceramide-binding START domain, CERT has FFAT (referring to two phenylalanines [FF] in an acidic tract) and pleckstrin homology (PH) domains that recognize the ER integral membrane protein VAMP-associated protein (VAP) and Golgi-associated PtdIns 4-phosphate, respectively. Mechanisms for vectorial transport involving dual-organellar targeting and sites of deposition of ceramide in the Golgi apparatus are proposed. Similar Golgi-ER targeting motifs are also present in the oxysterol-binding protein (OSBP), which regulates ceramide transport and SM synthesis in an oxysterol-dependent manner. Consequently, this emerges as a potential mechanism for integration of sphingolipid and cholesterol metabolism. The identification of organellar targeting motifs in other related lipid-binding/transport proteins indicate that concepts learned from the study of ceramide transport can be applied to other lipid transport processes.  相似文献   

18.
Following retrograde trafficking to the endoplasmic reticulum (ER), cholera toxin A1 (CTA1) subunit hijacks ER-associated degradation (ERAD) machinery and retro-translocates into the cytosol to induce toxicity. We previously established a cell-based in vivo assay to identify ER components that regulate this process. However, elucidating cytosolic events that govern CTA1 retro-translocation using this assay is difficult as manipulating cytosolic factors often perturbs toxin retrograde transport to the ER. To circumvent this problem, we developed an in vitro assay in semi-permeabilized cells that directly monitors CTA1 release from the ER into the cytosol. We demonstrate CTA1 is released into the cytosol as a folded molecule in a p97- and proteasome-independent manner. Release nonetheless involves a GTP-dependent reaction. Upon extending this assay to the canonical ERAD substrate T-cell receptor α (TCRα), we found the receptor is unfolded when released into the cytosol and degraded by membrane-associated proteasome. In this reaction, p97 initially extracts TCRα from the ER membrane, followed by TCRα discharge into the cytosol that requires additional energy-dependent cytosolic activities. Our results reveal mechanistic insights into cytosolic events controlling CTA1 and TCRα retro-translocation, and provide a reliable tool to further probe this process.  相似文献   

19.
Homeostatic cell physiology is preserved through the fidelity of the cell membranes restitution. The task is accomplished through the assembly of the precisely duplicated segments of the cell membranes, and transport to the site of their function. Here we examined the mechanism that initiates and directs the restitution of the intra- and extracellular membranes of gastric mucosal cell. The homeostatic restitution of gastrointestinal epithelial cell membrane components was investigated by studying the lipidomic processes in endoplasmic reticulum (ER) and Golgi. The biomembrane lipid synthesis during the formation of transport vesicles in the systems containing isolated organelle and the cell-specific cytosol (Cyt) from rat gastric mucosal epithelial cells was assessed. The results revealed that lipids of ER transport vesicle and the transmembrane and intravesicular cargo are delivered en bloc to the point of destination. En bloc delivery of proteins, incorporated into predetermined in ER lipid environment, ensures fidelity of the membrane modification in Golgi and the restitution of the lipid and protein elements that are consistent with the organelle and the cell function. The mechanism that maintains apical membrane restitution is mediated through the synthesis of membrane segments containing ceramide (Cer). The Cer-containing membranes and protein cargo are further specialized in Golgi. The portion of the vesicles destined for apical membrane renewal contains glycosphingolipids and phosphatidylinositol 3-phosphate. The vesicles containing phosphatidylinositol 4-phosphate are directed to endosomes. Our findings revealed that the preservation of the physiological equilibrium in cell structure and function is attributed to (1) a complete membrane segment synthesis in ER, (2) its transport in the form of ER-transport vesicle to Golgi, (3) the membrane components-defined maturation of lipids and proteins in Golgi, and (4) en bloc transfer of the new segment of the membrane to the cell apical membrane or intracellular organelle.  相似文献   

20.
The verotoxin (VT) (Shiga toxin) receptor globotriaosyl ceramide (Gb(3)), mediates VT1/VT2 retrograde transport to the endoplasmic reticulum (ER) for cytosolic A subunit access to inhibit protein synthesis. Adamantyl Gb(3) is an amphipathic competitive inhibitor of VT1/VT2 Gb(3) binding. However, Gb(3)-negative VT-resistant CHO/Jurkat cells incorporate adaGb(3) to become VT1/VT2-sensitive. CarboxyadaGb(3), urea-adaGb(3), and hydroxyethyl adaGb(3), preferentially bound by VT2, also mediate VT1/VT2 cytotoxicity. VT1/VT2 internalize to early endosomes but not to Golgi/ER. AdabisGb(3) (two deacyl Gb(3)s linked to adamantane) protects against VT1/VT2 more effectively than adaGb(3) without incorporating into Gb(3)-negative cells. AdaGb(3) (but not hydroxyethyl adaGb(3)) incorporation into Gb(3)-positive Vero cells rendered punctate cell surface VT1/VT2 binding uniform and subverted subsequent Gb(3)-dependent retrograde transport to Golgi/ER to render cytotoxicity (reduced for VT1 but not VT2) brefeldin A-resistant. VT2-induced vacuolation was maintained in adaGb(3)-treated Vero cells, but vacuolar membrane VT2 was lost. AdaGb(3) destabilized membrane cholesterol and reduced Gb(3) cholesterol stabilization in phospholipid liposomes. Cholera toxin GM1-mediated Golgi/ER targeting was unaffected by adaGb(3). We demonstrate the novel, lipid-dependent, pseudoreceptor function of Gb(3) mimics and their structure-dependent modulation of endogenous intracellular Gb(3) vesicular traffic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号