共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of Industrial Ecology》2006,10(1-2):89-110
Contemporary cycles for copper and zinc are coanalyzed with the tools of exploratory data analysis. One-year analyses (circa 1994) are performed at three discrete spatial levels-country (52 countries that comprise essentially all anthropogenic stocks and flows of the two metals), eight world regions, and the planet as a whole-and are completed both in absolute magnitude and in per capita terms. This work constitutes, to our knowledge, the first multiscale, multilevel analysis of anthropogenic resources throughout their life cycles. The results demonstrate that (1) A high degree of correlation exists between country-level copper and country-level zinc rates of fabrication and manufacturing, entry into use, net addition to in-use stocks, discard, and landfilling; (2) Regional-level rates for copper and zinc cycle parameters show the same correlations as exist at country level; (3) On a per capita basis, countries add to in-use stock almost 50% more copper than zinc; (4) The predominant discard streams for copper and zinc at the global level are different for the two metals, and relative rates of different loss processes differ geographically, so that resource recovery policies must be designed from metalspecific and location-specific perspectives; (5)When absolute magnitudes of life-cycle flows are considered, the standard deviations of the data sets decrease from country level to regional level for both copper and zinc, which is not the case for the per capita data sets, where the statistical properties of the data sets for both metals approach being independent of spatial level, thus providing a basis for predicting unmeasured per capita metal flow behavior. 相似文献
2.
Copper (Cu) is an essential but supply‐restricted resource in China. Characterization of in‐use stocks can provide useful instruction for the future recycling of copper. This article attempts to estimate copper in‐use stocks in a Chinese city. To this purpose, an extensive bottom‐up estimate of copper stocks in use in Nanjing in the year 2009 was conducted. The results are a total stock estimate of 295 gigagrams (Gg) of copper or 46.9 kilograms (kg) of copper per capita for 2009. Infrastructure, equipment, and buildings contain 42.0%, 26.1%, and 28.1% of the total stock, respectively, indicating that these three categories are principal potential reservoirs of a secondary copper resource. The copper in transportation amounts to only about 3.7% of the total amount. The per capita stock was compared with similar studies carried out in other regions of the world, and the results show that the Nanjing level is significantly lower than developed countries. On the whole, our results show that electric power transmission and distribution systems, buildings, household durables, and industrial equipment are the four largest potential reservoirs of copper scrap. 相似文献
3.
Matthias Achternbosch Christel Kupsch Gerhard Sardemann and Klaus-Rainer Bräutigam 《Journal of Industrial Ecology》2009,13(3):438-454
Material flows of the economic cycle can contain toxic substances, which enter the economy as impurities in raw materials or are intentionally added as minor or even main constituents during the manufacture of industrial or consumer goods. Cadmium, predominantly associated with zinc minerals, is a by-product of the primary zinc production. Cadmium is generated when zinc is extracted from zinc ores and concentrates, an intermediate product resulting from flotation processing after the zinc ore has been mined and milled. Information on the amount of cadmium generated from zinc extraction is rarely published. In this article, we assess generation and fate of cadmium accumulating worldwide in the production of primary zinc from ores and concentrates. Model calculations for the beginning of the 21st century show that annually about 30,000 tonnes of cadmium were generated, but only approximately 16,000 tonnes were converted to primary cadmium metal, key material for the production of other cadmium compounds (e.g., cadmium oxide), and cadmium-containing goods (e.g., nickel−cadmium batteries). Hence, about 14,000 tonnes of cadmium must have been transferred somewhere else. The fate of about 5,500 tonnes can be plausibly explained, but it is difficult to determine what happens to the rest. 相似文献
4.
In this article, the development of natural resource use in Finland during the period 1970-1997 is analyzed. In measuring natural resource use, the concept of total material requirement (TMR) is applied. The focus is on the linkages of resource use with the changing structures of the economy. The linkages are studied using input-output analysis.
Using input-output analysis, the TMR is further partitioned into resources used for domestic final use or for total material consumption (TMC) and total material requirement of exports (TME). The analysis shows that TMR has the problem of double accounting: if the TMRs of all countries of the world are summed, then international trade would be accounted for twice in the world TMR, once in imports and once in exports of each country.
The TMC concept does not have this kind of defect. In a small, open economy like that of Finland, where the share of foreign trade is large, the difference between the TMR and the TMC is also large. We show that by 1997, the TME comprised about half of Finland's TMR and that the growth of the TMR over the study period has been due to the TME only as the TMC has stayed rather constant. 相似文献
Using input-output analysis, the TMR is further partitioned into resources used for domestic final use or for total material consumption (TMC) and total material requirement of exports (TME). The analysis shows that TMR has the problem of double accounting: if the TMRs of all countries of the world are summed, then international trade would be accounted for twice in the world TMR, once in imports and once in exports of each country.
The TMC concept does not have this kind of defect. In a small, open economy like that of Finland, where the share of foreign trade is large, the difference between the TMR and the TMC is also large. We show that by 1997, the TME comprised about half of Finland's TMR and that the growth of the TMR over the study period has been due to the TME only as the TMC has stayed rather constant. 相似文献
5.
A comprehensive multilevel contemporary cycle for stocks and flows of zinc is analyzed by the tools of exploratory data analysis. The analysis is performed at three discrete organizational levels—country (53 countries and 1 country group that together comprise essentially all anthropogenic stocks and flows of zinc), world region (9 world regions), and the planet as a whole. The results demonstrate the following: (1) Exploratory data analysis provides valuable and otherwise unobtainable information about material flows, especially those across multiple spatial levels. (2) All distributions of countrylevel zinc stock and flow data are highly skewed, a few countries having large magnitudes, many having small magnitudes. Rates of fabrication of zinc-containing products for the countries are poorly correlated with rates of extraction, reflecting the fact that many countries that extract zinc do not fabricate products from zinc to any significant degree, and vice versa. (4) Virtually all countries are adding zinc to stock in the use phase (in galvanizing applications, zinc castings, etc.). These rates of addition are highly correlated with rates of zinc entering use in all regions, and are higher in regions under vigorous development. (5) With weak confidence, the rate of zinc landfilling by countries appears to be highly correlated with the rate of discard. (6) The statistical distributions of regional-level zinc cycle parameters are approximately log normal. (7) The extremes of normalized statistical distributions of zinc flow values are broader at lower spatial levels (country versus region, for example), but regional interquartile ranges for zinc entering use and zinc discards are higher at regional level then at country level. 相似文献
6.
Simon W. Moolenaar 《Journal of Industrial Ecology》1999,3(1):41-53
The aim of sustainable heavy-metal management in agroecosystems is to ensure that the soil continues to fulfill its functions: in agricultural production, in environmental processes such as the cycling of elements, and as a habitat of numerous organisms. To understand and manage heavy-metal flows effectively, a consistent approach to modeling the flows is needed within the particular agro-system under study. General aspects of heavy-metal balance studies in agro-ecosystems were described in part I of this study. In this article (part II), several European studies of heavy-metal balances at varying spatial scales and in a variety of agro-ecosystems are reviewed. Sectoral studies at the national and international levels provide information for economic analyses and generic regulations; however, policies implemented at these levels often ignore farm characteristics and individual management options. Field-scale and farm-gate balances give farmers specific feedback on effective options for better heavy-metal management. Heavy-metal balances could be incorporated in an environmental management system of certified farms. In this way, farm certification may well serve as a basis from which to develop policy to address environmental issues in agriculture. 相似文献
7.
Tina‐Simone Schmid Neset Hans‐Peter Bader Ruth Scheidegger 《Journal of Industrial Ecology》2006,10(4):61-75
Changes in food consumption and related processes have a significant impact on the flow of nitrogen in the environment. This study identifies both flows within the system and emissions to the hydrosphere and atmosphere. A case study of an average inhabitant of the city of Linköping, Sweden, covers the years 1870, 1900, 1950, and 2000 and includes changes in food consumption and processing, agricultural production, and organic waste handling practices. Emissions to the hydrosphere from organic waste handling increased from 0.57 kilograms of nitrogen per capita per year (kg N/cap per year) to 3.1 kg N/cap per year, whereas the total flow of nitrogen to waste deposits grew from a negligible amount to 1.7 kg N/cap per year. The largest flow of nitrogen during the entire period came from fodder. The input of chemical fertilizer rose gradually to a high level of 15 kg N/cap per year in the year 2000. The total load per capita disposed of to the environment decreased during these 130 years by about 30%. 相似文献
8.
Ulrich Kral Chih‐Yi Lin Katharina Kellner Hwong‐wen Ma Paul H. Brunner 《Journal of Industrial Ecology》2014,18(3):432-444
Material management faces a dual challenge: on the one hand satisfying large and increasing demands for goods and on the other hand accommodating wastes and emissions in sinks. Hence, the characterization of material flows and stocks is relevant for both improving resource efficiency and environmental protection. This article focuses on the urban scale, a dimension rarely investigated in past metal flow studies. We compare the copper (Cu) metabolism of two cities in different economic states, namely, Vienna (Europe) and Taipei (Asia). Substance flow analysis is used to calculate urban Cu balances in a comprehensive and transparent form. The main difference between Cu in the two cities appears to be the stock: Vienna seems close to saturation with 180 kilograms per capita (kg/cap) and a growth rate of 2% per year. In contrast, the Taipei stock of 30 kg/cap grows rapidly by 26% per year. Even though most Cu is recycled in both cities, bottom ash from municipal solid waste incineration represents an unused Cu potential accounting for 1% to 5% of annual demand. Nonpoint emissions are predominant; up to 50% of the loadings into the sewer system are from nonpoint sources. The results of this research are instrumental for the design of the Cu metabolism in each city. The outcomes serve as a base for identification and recovery of recyclables as well as for directing nonrecyclables to appropriate sinks, avoiding sensitive environmental pathways. The methodology applied is well suited for city benchmarking if sufficient data are available. 相似文献
9.
Heming Wang Seiji Hashimoto Qiang Yue Yuichi Moriguchi Zhongwu Lu 《Journal of Industrial Ecology》2013,17(4):618-629
We examine decoupling conditions of domestic extraction of materials, energy use, and sulfur dioxide (SO2) emissions from gross domestic product (GDP) for two BRIC (Brazil, Russia, India and China) countries (i.e., China and Russia) and two Organisation for Economic Co‐operation and Development (OECD) countries (Japan and the United States) during 2000–2007, using a pair of decoupling indicators for resource use (Dr) and waste emissions (De) and the decoupling chart, which can distinguish between absolute decoupling, relative decoupling, and non‐decoupling. We find that (1) during 2000–2007, decoupling between environmental indicators and GDP was higher in the two OECD countries as compared with the two BRIC countries. The key reason is that these countries were in different development stages with different economic growth rates. (2) Changes in environmental policies can significantly influence the degree of decoupling in a country. (3) China, Japan, and the United States were more successful in decoupling SO2 emissions from GDP than in decoupling material and energy use from GDP. The main reason is that, unlike resource use, waste emissions (e.g., SO2 emissions) can be reduced by effective end‐of‐pipe treatment. (4) The decoupling indicator is different from the changing rate of resource use and waste emissions. If two countries have different GDP growth rates, even though they may have similar values using the decoupling indicator, they may show different rates of change for resource use and waste emissions. 相似文献
10.
Yi Liu Gara Villalba Robert U. Ayres Hans Schroder 《Journal of Industrial Ecology》2008,12(2):229-247
Human activities have significantly intensified natural phosphorus cycles, which has resulted in some serious environmental problems that modern societies face today. This article attempts to quantify the global phosphorus flows associated with present day mining, farming, animal feeding, and household consumption. Various physical characteristics of the related phosphorus fluxes as well as their environmental impacts in different economies, including the United States, European countries, and China, are examined. Particular attention is given to the global phosphorus budget in cropland and the movement and transformation of phosphorus in soil, because these phosphorus flows, in association with the farming sector, constitute major fluxes that dominate the anthropogenic phosphorus cycle. The results show that the global input of phosphorus to cropland, in both inorganic and organic forms from various sources, cannot compensate for the removal in harvests and in the losses by erosion and runoff. A net loss of phosphorus from the world's cropland is estimated at about 10.5 million metric tons (MMT) phosphorus each year, nearly one half of the phosphorus extracted yearly. 相似文献
11.
The 20th century was a time of rapidly escalating use of lead (Pb). As a consequence, the standing stock of lead is now substantial. By linking lead extraction and use to estimates of product lifetimes and recycling, we have derived an estimate of the standing stock of lead throughout the century by top-down techniques. We find that the stock of in-use lead is almost entirely made up of batteries (68%), lead sheet (10%), and lead pipe (10%). Globally, about 200 teragrams (Tg) Pb was mined in the 20th century, and about 25 Tg Pb now makes up the in-use stock, so some 87% has been lost over time. Nonetheless, about 11% of all lead entering use was added to in-use stock in 2000, so the stock continues to increase each year. Currently, most of the stock is in Europe (32%), North America (32%), and Asia (24%). On a per capita basis, the global stock is about 5.6 kilograms (kg) Pb, and regional in-use stock ranges from 2.0 kg Pb (Africa) to 19.7 kg Pb (Europe). From a sustainability perspective, we estimate that the global lead resource is around 415 Tg Pb. Were the entire world to receive the services of lead at the level of the developed countries, some 130 Tg Pb would be needed, so there do not appear to be significant long-term limitations to the lead supply. 相似文献
12.
Fluorine is an essential element to human health and to the chemical industry. In spite of our dependence on fluorine and fluorine compounds, we have yet to learn to use them wisely. Our fluorine history, which spans about a hundred years, has had negative effects such as hydrofluoric acid pollution caused by aluminum smelters and ozone depletion due to chlorofluorocarbon (CFC) emissions. More recent concerns center on greenhouse effects from CFCs, hydrofluorocarbons (HFCs), and sulfur hexafluoride (SF6). In this article we note also that fluorine is a nonrenewable resource that is nonsubstitutable for many purposes. This article tracks fluorine from sources through conversion processes to end uses, most of which are dissipative. We present a stock‐flow model of the fluorine system. Based on this model we consider some possible measures that could be taken to increase the degree of recovery. To mention one example, a large percentage of the world demand for fluorspar could be supplied by the phosphate rock (fertilizer) industry, which currently dissipates a great deal of recoverable fluorine in waste phospho‐gypsum. 相似文献
13.
This article describes a stock-based methodology designed to analyze the redistribution of substance stocks to environmental compartments. The methodology is then applied to investigate the requirements and possibilities for avoiding undesired future accumulation of cadmium in Swedish arable soils. A prospective decomposition analysis of human cadmium mobilization is thus performed to estimate the potential amounts that can end up in arable soils through different flows from the cadmium stocks identified. The requirements for cadmium abatement to achieve prescribed goals for accumulation limits are determined and compared with past and current achievements and with the varying qualities of possible abatement methods.
A stock-based methodology adds some important information to traditional scenario techniques based on substance flow analysis. The most obvious is that the fact that stocks are limited actually matters for long-term accumulation of cadmium in arable land. The methodology may also contribute certain indicators, for instance, on abatement requirements, which could serve as a complement to regulation and local quality measures on specific flows at an aggregated policy level. The stock perspective also sheds new light on actions such as increased recycling.
Concerning the specific example used in the study, it is possible to achieve a future addition of cadmium in Swedish agricultural soils that is significantly lower than in the past, although the amount depends to a large degree on activities and policies outside Sweden. Considerable uncertainty exists regarding future depositions from air, especially that from distributed small-scale emissions from fuel burning and reemission of already deposited cadmium from natural media. Measures must also be taken to guarantee a continued low addition in the form of mineral phosphorus fertilizers. 相似文献
A stock-based methodology adds some important information to traditional scenario techniques based on substance flow analysis. The most obvious is that the fact that stocks are limited actually matters for long-term accumulation of cadmium in arable land. The methodology may also contribute certain indicators, for instance, on abatement requirements, which could serve as a complement to regulation and local quality measures on specific flows at an aggregated policy level. The stock perspective also sheds new light on actions such as increased recycling.
Concerning the specific example used in the study, it is possible to achieve a future addition of cadmium in Swedish agricultural soils that is significantly lower than in the past, although the amount depends to a large degree on activities and policies outside Sweden. Considerable uncertainty exists regarding future depositions from air, especially that from distributed small-scale emissions from fuel burning and reemission of already deposited cadmium from natural media. Measures must also be taken to guarantee a continued low addition in the form of mineral phosphorus fertilizers. 相似文献
14.
A model of the use of the platinum group metals (PGMs) platinum, palladium, and rhodium in Europe has been developed and combined with a model of the environmental pressures related to PGM production. Compared to the base case presented in Part I of this pair of articles, potential changes in PGM production and use are quantified with regard to cumulative and yearly environmental impacts and PGM resource use, for the period 2005–2020. Reducing sulfur dioxide (SO2 ) emissions of PGM producer Norilsk Nickel could cut the cumulative SO2 emissions associated with the use of PGMs in Europe by 35%. Cleaner electricity generation in South Africa could reduce cumulative SO2 emissions by another 9%. Increasing the recycling rate of end-of-life catalytic converters to 70% in 2020 could save 15% of the cumulative primary PGM input into car catalysts and 10% of the SO2 emissions associated with PGM production. In 2020, PGM requirements and SO2 emissions would be, respectively, 40% and 22% lower than the base case.
Substituting palladium for part of the platinum in diesel catalysts, coupled with a probable palladium price increase, could imply 15% more cumulative SO2 emissions if recycling rates do not increase.
A future large-scale introduction of fuel cell vehicles would require technological improvements to significantly reduce the PGM content of the fuel cell stack. The basic design of such vehicles greatly influences the vehicle power, a key parameter in determining the total PGM requirement. 相似文献
Substituting palladium for part of the platinum in diesel catalysts, coupled with a probable palladium price increase, could imply 15% more cumulative SO
A future large-scale introduction of fuel cell vehicles would require technological improvements to significantly reduce the PGM content of the fuel cell stack. The basic design of such vehicles greatly influences the vehicle power, a key parameter in determining the total PGM requirement. 相似文献
15.
A method for quantitative evaluation of data quality in regional material flow analysis (MFA) is presented. The principal idea is that data quality is a multidimensional problem that cannot be judged by individual characteristics such as the data source, given that data from official statistics may not be per se of good quality and expert estimations may not be per se of bad quality, respectively. It appears that MFA data are never totally accurate and may have certain defects that impair the quality of the data in more than one dimension. The concept of MFA information defects is introduced, and these information defects are mathematically formalized as functions of data characteristics. They are quantified on a scale from 0 (no information defect) to 1 (maximum information defect). The proposed method is illustrated in a case study on palladium flows in Austria. A quantitative evaluation of data quality provides opportunities for understanding and assessing MFA results, their a priori information basis, their reliability in decision making, and data uncertainties. It is a formal step toward better reproducibility and more transparency in MFA. 相似文献
16.
G. Venkatesh 《Journal of Industrial Ecology》2013,17(3):472-481
The focus of urban water system metabolism studies has, by and large, been restricted to what comes under the domain of the urban water utilities: water treatment and supply, and wastewater collection, treatment, and disposal. The material and energy flows both necessitated and facilitated by the supply of treated water to households—the water demand subsystem—are by no means negligible. This article studies the key flows into households associated with water consumption and the environmental impacts related to the same for India as a whole. Electricity consumption in washing machines and water heaters contributes the most to almost all the 13 environmental impact categories considered. This is easily explained by the fossil fuel heaviness of the Indian mix (>60%). Soaps contribute the most to terrestrial eco‐toxicity and malodorous air. In India, on a national scale, all the environmental impact categories deserve attention. The absolute consumption of electricity, soaps, and detergents, and the demand for home appliances will increase in the years to come. 相似文献
17.
Modern human activities greatly disturb substance flows in nature and senselessly discard massive amounts of precious resources to natural waste reservoirs; phosphorus (P) is a good example of this. In this article, substance flow analysis is employed to quantify and explore the temporal evolution of China's P consumption in main metabolic nodes from 1984 to 2008, and then the environmental implications for P flows into both surface waters and natural soil are investigated. Results show that the metabolic nodes of human life and animal husbandry have demanded increasingly more P inputs, while disseminating more and more P wastes, with the waste recycling ratios of these processes dropping, respectively, from 65.9% and 66.1% in 1984 to 50.7% and 40.6% by 2008. These change traits were closely related to national polices including the Household Contract Responsibility System and the Shopping Basket Program, as well as the policy vacuum existing between China's agricultural and environmental administration departments. To achieve high crop yield, increasingly more inorganic P fertilizers have been utilized in China, but their use efficiency has decreased by 46.3%. From 2003 to 2008, the total P load into surface waters was stabilized at about 900.0 kilotons (kt), while the total P load into natural soil increased by more than 3.8 times to 3,131.3 kt P in 2008. City life and the intensive breeding of crops are identified as the main targets for further pollution control and nutrient recycling in China. Some suggestions for achieving environmentally sound practices and resource sustainability in China are proposed at the end of this article. 相似文献
18.
19.
This article is the first of a two-part series that describes and compares the essential features of nine existing "physical economy" approaches for quantifying the material demands of the human economy upon the natural environment. A range of material flow analysis (MFA) and related techniques is assessed and compared in terms of several major dimensions. These include the system boundary identification for material flow sources, extents, and the key socioinstitutional entities containing relevant driving forces, as well as the nature and detailing of system components and flow interconnections, and the comprehensiveness and types of flows and materials covered.
Shared conceptual themes of a new wave of physical economy approaches are described with a brief overview of the potential applications of this broad family of methodologies. The evolving and somewhat controversial nature of the characteristics and role that define MFA is examined. This review suggests the need to specify whether MFA is a general metabolic flow measurement procedure that can be applied from micro to macrolevels of economic activity, or a more specific methodology aimed primarily at economy-wide analyses that "map" the material relations between society and nature. Some alternative options for classifying MFA are introduced for discussion before a more detailed comparative summary of the key methodological features of each approach in the second part of this two-part article.
The review is presented (1) as a reference and resource for the increasing number of policy makers and practitioners involved in industrial ecology and the evaluation of the material basis of economies and the formulation of eco-efficiency strategies, and (2) to provoke discussion and ongoing dialogue to clarify the many existing areas of discordance in environmental accounting related to material flows, and help consolidate the methodological basis and application of MFA. 相似文献
Shared conceptual themes of a new wave of physical economy approaches are described with a brief overview of the potential applications of this broad family of methodologies. The evolving and somewhat controversial nature of the characteristics and role that define MFA is examined. This review suggests the need to specify whether MFA is a general metabolic flow measurement procedure that can be applied from micro to macrolevels of economic activity, or a more specific methodology aimed primarily at economy-wide analyses that "map" the material relations between society and nature. Some alternative options for classifying MFA are introduced for discussion before a more detailed comparative summary of the key methodological features of each approach in the second part of this two-part article.
The review is presented (1) as a reference and resource for the increasing number of policy makers and practitioners involved in industrial ecology and the evaluation of the material basis of economies and the formulation of eco-efficiency strategies, and (2) to provoke discussion and ongoing dialogue to clarify the many existing areas of discordance in environmental accounting related to material flows, and help consolidate the methodological basis and application of MFA. 相似文献
20.
Esther Müller Rolf Widmer Vlad C. Coroama Amélie Orthlieb 《Journal of Industrial Ecology》2013,17(6):814-826
The Internet leads to material and energy consumption as well as various environmental impacts on both the regional and global scale. Yet, assessments of the Internet's energy consumption and resulting greenhouse gas emissions are still rare, and assessments of material flows and further environmental impacts are virtually non‐existent. This article investigates material flows, the direct energy consumption during the use phase, as well as environmental impacts linked to the service, “Internet in Switzerland.” In our model, the service, Internet in Switzerland, is divided into various Internet participant categories. All devices used to access or provide Internet services are merged in a limited number of equipment families and, as such, included in an inventory of the existing infrastructure (stock). Based on this inventory, a material flow analysis (MFA) is performed, which includes the current stock as well as flows resulting from growth and disposal. The direct energy consumption for the operation of the infrastructure is quantified. Environmental impacts are calculated with a life cycle assessment approach, using the ecoinvent database and the software, SimaPro, applying four different methods. The MFA results in a 2009 stock of 98,100 tonnes. Approximately 4,130 gigawatt hours per year, or 7% of the total Swiss electricity consumption, were used in 2009 to operate the Swiss infrastructure. The environmental impacts caused during the production and use phases vary significantly depending on the assessment method chosen. The disposal phase had mainly positive impacts as a result of material recovery. 相似文献