首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Amounts and modulation of actin mRNAs in mouse oocytes and embryos   总被引:9,自引:0,他引:9  
In order to measure the content of beta- and gamma-actin mRNA in mouse oocytes and ovulated eggs, Northern and slot blots were hybridized to complementary RNA probes transcribed from mouse isotype-specific cDNA sequences. The blots included samples of isotype-specific sense strand RNA standards prepared from the same cDNA sequences. Total actin mRNA content was estimated to be 40 fg per preovulatory full-grown oocyte or egg, consisting of one-third beta-actin mRNA and two-thirds gamma-actin mRNA. Ninety per cent of the actin mRNA is on polysomes in full-grown oocytes. The per cent of actin mRNA in polysomal mRNA is similar to the per cent of actin in newly synthesized proteins. Measurements on other developmental stages showed that, in mid-growth-phase oocytes, each actin mRNA reaches a level twofold higher than in full-grown oocytes. Thereafter, all modulations of the two isotypic mRNAs occur in parallel; that is, they are maintained at constant levels during the late growth phase (oocytes from females 8-14 days old); gradually degraded in oocytes that have completed their rapid growth phase (oocytes from females 15-18 days old), in maturing oocytes, and in 1- and 2-cell embryos; and deadenylated after about 7 h of progression into meiotic maturation.  相似文献   

3.
We have investigated the accumulation and adenylation of the maternal mRNA during oogenesis in the oocytes of the marine worm Urechis caupo. The analysis, using in vitro translation and cDNA probes to assay for specific mRNAs, demonstrates that different maternal mRNAs accumulate with different patterns during oogenesis. One class of maternal mRNAs accumulates throughout oogenesis and remains at a steady level in the full-grown oocyte. These mRNAs do not have a poly(A) tail long enough to mediate binding to oligo(dT)-cellulose in oocytes, but are rapidly adenylated immediately following fertilization. The other maternal mRNAs accumulate in growing oocytes as poly(A)+ RNA and undergo some deadenylation in full-grown oocytes and embryos. Some of these mRNAs attain their highest concentration fairly early in oogenesis, while others continue to accumulate during later stages. Many of the mRNAs that accumulate as poly(A)+ RNA in growing oocytes diminish dramatically in concentration in full-grown oocytes.  相似文献   

4.
5.
6.
Previous work has shown that more than 50% or about 50 pg of polyadenylated RNA found in the full-grown mouse oocyte is deadenylated or degraded during meiotic maturation. Here we show that rRNA declines by 60 pg during this period, accounting for most of the 80-pg decline in total RNA and indicating that a significant amount of mRNA is deadenylated but not degraded during maturation. Actin mRNA is deadenylated at about 7 hr of in vitro maturation, following the decline in its translation. The poly(A) tail on hypoxanthine phosphoribosyltransferase (HPRT) mRNA is elongated at 7 hr of maturation, preceding an increase in HPRT activity. Actin mRNA is partially degraded in the one-cell embryo and falls to near the limit of detection in the late two-cell stage, while HPRT mRNA shows no change in early two-cell embryos, but is deadenylated and declines greatly during the two-cell stage. In aging unfertilized eggs, most of these changes occur on a delayed schedule. The various species of alpha-tubulin mRNA are largely deadenylated and more than half are degraded during maturation. Taken together with other published results, we conclude that each mRNA has its own pattern of changes in the length of the poly(A) tail (correlated with translation) and degradation during the period of maternal control of protein synthesis, and, for those examined, the maternal mRNAs remaining in the early two-cell embryo are degraded to low levels by the late two-cell stage.  相似文献   

7.
Tropomyosins are actin-binding cytoskeletal proteins that play a pivotal role in regulating the function of actin filaments in muscle and non-muscle cells; however, the roles of non-muscle tropomyosins in mouse oocytes are unknown. This study investigated the expression and functions of non-muscle tropomyosin (Tpm3) during meiotic maturation of mouse oocytes. Tpm3 mRNA was detected at all developmental stages in mouse oocytes. Tpm3 protein was localized at the cortex during the germinal vesicle and germinal vesicle breakdown stages. However, the overall fluorescence intensity of Tpm3 immunostaining was markedly decreased in metaphase II oocytes. Knockdown of Tpm3 impaired asymmetric division of oocytes and spindle migration, considerably reduced the amount of cortical actin, and caused membrane blebbing during cytokinesis. Expression of a constitutively active cofilin mutant and Tpm3 overexpression confirmed that Tpm3 protects cortical actin from depolymerization by cofilin. The data indicate that Tpm3 plays crucial roles in maintaining cortical actin integrity and asymmetric cell division during oocyte maturation, and that dynamic regulation of cortical actin by Tpm3 is critical to ensure proper polar body protrusion.  相似文献   

8.
The incorporation of 3H-guanosine as 3H-GMP into 5S RNA and into transfer RNA (tRNA) was examined in isolated large germinal vesicle oocytes, in isolated mature ootids and during and subsequent to hormonally (l-methyladenine)-induced meiotic maturation in the starfish, Asterias forbesii .Purified soluble RNA 1 preparations at each stage were fractionated by electrophoresis on 10% polyacrylamide gels, while high molecular weight RNAs were resolved by subjecting total RNA samples to electrophoresis on 2.4% acrylamide+0.5% agarose gels. The results showed that large germinal vesicle oocytes, containing a single compact nucleolus, synthesize 5S RNA and tRNA as well as the previously-reported (1, 23-26) nucleolar rRNAs. In contrast, during and subsequent to hormonally-induced meiotic maturation, after germinal vesicle braekdown and nucleolar dissolution, the synthesis of 5S RNA and tRNA continues in the absence of detectable high molecular weight rRNA synthesis.  相似文献   

9.
10.
Summary Poly(A)+RNA and tubulin mRNA are localized in the periphery of Xenopus oocytes and become delocalized during meiotic maturation. Delocalization of this RNA can be triggered by incubation in agents which reduce entry of calcium ions into the cell (e.g. lanthanum chloride and verapamil). Although these agents ordinarily promote meiotic maturation, addition of theophylline to the medium will inhibit maturation but not delocalization. Manipulations which prevent calcium entry without inducing meiotic maturation (e.g. calcium-free buffer) are also shown to trigger disruption of the RNA localization. In addition, manipulations which reduce chloride efflux from the cell (e.g. increasing the external chloride ion concentration with choline chloride) result in disruption of the localization of poly (A)+ RNA and tubulin mRNA without inducing meiotic maturation. The calcium-dependent chloride efflux present in Xenopus oocytes disappears after the oocyte has been stimulated to proceed through meiotic maturation. We show that reduction of the influx of calcium ions or efflux of chloride ions induces the delocalization of poly (A)+RNA and tubulin mRNA without inducing meiotic maturation. We suggest, therefore, that reducing the transmembrane movement of these ions is likely to be the natural trigger for the delocalization of poly(A)+RNA and tubulin mRNA.  相似文献   

11.
12.
山羊卵母细胞的减数分裂进程   总被引:5,自引:0,他引:5  
The meiotic progression of goat oocytes from follicles of different diameters was investigated in this study. The results were summarized as follows: (1) The in vitro meiotic maturation capacity was different among oocytes from follicles of different diameters. And thus oocytes from < or = 0.5 mm follicles were unable to resume meiosis; oocytes from 0.8-1.2 mm follicles were capable to resume meiosis, but could develop only to MI stage (60% at 24 h); oocytes from 1.5-5 mm follicles had acquired full-meiotic maturation capacity and 91% of them developed to M II stage at 24 h of culture. (2) The percentage of oocytes with intact-germinal vesicles from 1.5-5 mm follicles decreased significantly during 2-8 h of in vitro maturation and the decrease was even more rapid during 4-6 h of culture (from 60% to 19%, p < 0.0005). The percentage of oocytes at M I-stage increased from 24% to 61% during 6-12 h of in vitro maturation, and it then decreased. By 24 h of culture, only 2% oocytes remained at M I-stage. Twenty one percent of the oocytes in this group developed to M II-stage at 16 h of culture, and by 24 h of culture, 91% were at M II-stage. (3) Statistic analysis of the meiotic progression (the duration of each cell cycle stage) of oocytes from 1.5-5 mm follicles showed that GV stage lasted from 0 to 3 h of culture, prometaphase-I stage was from 3.0 to 7.0 h, metaphase-I stage was from 7.0 to 14.6 h, anaphase-I/telophase-I was from 14.6 to 18.4 h and metaphase-II stage lasted from 18.4 to 24 h. (4) Whether the oocytes capable of GVBD and entrance of M I developed to M II, the timing of meiotic progression prior to M I was similar. In summary, our results provided necessary data for studies on the mechanisms and control of meiosis in mammalian oocytes.  相似文献   

13.
14.
15.
The 4 and 5 S RNA containing 42 S ribonucleoprotein (RNP) particles characteristic of previtellogenic and white oocytes cannot be detected in full-grown oocytes. When full-grown oocyte RNPs are separated on sucrose gradients 4 and 5 S RNA cannot be detected in the 42 S region. However, not all of the 5 S RNA stored during early oogenesis is incorporated into ribosomes at later stages. A substantial pool (20% of the total) of 5 S RNA remains in a non-ribosome-bound fraction sedimenting at about 7 S in full-grown oocytes.  相似文献   

16.
The pattern of protein synthesis in oocytes of starfish Marthasterias glacialis changes during 1-methyladenine-induced meiotic maturation. One of the newly synthesized proteins, a major 54-kDa polypeptide, was synthesized continuously after activation but was destroyed abruptly just before appearance of the polar bodies at each meiotic division. This protein thus resembles the cyclin proteins identified in cleaving sea urchin and clam embryos. RNA extracted from oocytes before and after maturation encoded virtually identical polypeptides when translated in the reticulocyte lysate. However, there was poor correspondence between the in vitro translation products and the labelling pattern of intact cells. There was no exact in vitro counterpart to the in vivo-labelled cyclin. Instead, a major polypeptide of 52 kDa was seen which appears to be a precursor of the 54-kDa form of cyclin. The 52-kDa polypeptide was identified as cyclin by hybrid arrest of translation. Cyclin mRNA is ot translated to a significant extent before oocyte activation and is present in oocytes as nonadenylated form. It becomes polyadenylated when the oocytes mature. This behavior is also seen in the case of the mRNA for the small subunit of ribonucleotide reductase, another abundant maternal mRNA whose translation is activated at maturation.  相似文献   

17.
The Arp2/3 complex regulates actin nucleation, which is critical for a wide range of cellular processes, such as cell polarity, cell locomotion, and endocytosis. In the present study, we investigated the possible roles of the Arp2/3 complex in porcine oocytes during meiotic maturation. Immunofluorescent staining showed the Arp2/3 complex to localize mainly to the cortex of porcine oocytes, colocalizing with actin. Treatment with an Arp2/3 complex specific inhibitor, CK666, resulted in a decrease in Arp2/3 complex localization at the oocyte cortex. The maturation rate of porcine oocytes decreased significantly after CK666 treatment, concomitant with the failure of cumulus cell expansion and oocyte polar body extrusion. The fluorescence intensity of F-actin decreased in the cytoplasm, and CK666 also disrupted actin cap formation. In summary, our results illustrate that the Arp2/3 complex is required for the meiotic maturation of porcine oocytes and that actin nucleation is critical for meiotic maturation.  相似文献   

18.
19.
RINGO, a protein with no homology to cyclin B, has been reported to be involved in activation of CDC2 and regulation of meiotic maturation in Xenopus oocytes. Although the presence of homologues of RINGO families, which are known as SPDY families, has been reported in mammals, their roles in meiotic maturation of mammalian oocytes have never been examined. In the present study, the effects of SPDY on meiotic maturation of porcine oocytes were examined. At first, Xenopus RINGO (xRINGO) mRNA was injected into immature porcine oocytes and found to significantly accelerate CDC2 activation and meiotic resumption. The CCNB (also known as cyclin B) synthesis was prematurely started at 12 h of culture, whereas it started at 18 h in normal oocytes. We next cloned RINGO A2 homologue in pig (pigSPDYA2) from total RNA of immature porcine oocytes by RT-PCR and obtained full-length cDNA that was more than 85% and 40% homologous with mammalian SPDYA2 and xRINGO, respectively. Acceleration effects similar to those by xRINGO were observed in CDC2 activation, meiotic resumption, and the start of CCNB synthesis in pigSPDYA2 mRNA-injected porcine oocytes. In clear contrast with the effects of xRINGO, which was accumulated abnormally in porcine oocytes and arrested them in the first meiotic metaphase (M1), pigSPDYA2 accelerated the meiotic progression, with about half of pigSPDYA2 mRNA-injected oocytes completing meiotic maturation within 30 h. These results suggest that pigSPDYA2 has important roles on meiotic maturation of porcine oocytes and that the rapid degradation of SPDY was necessary for the normal maturation of oocytes.  相似文献   

20.
Xtr in the fertilized eggs of Xenopus has been demonstrated to be a member of a messenger ribonucleoprotein (mRNP) complex that plays a crucial role in karyokinesis during cleavage. Since the Xtr is also present both in oocytes and spermatocytes and its amount increases immediately after spematogenic cells enter into the meiotic phase, this protein was also predicted to act during meiotic progression. Taking advantage of Xenopus oocytes' large size to microinject anti-Xtr antibody into them for inhibition of Xtr function, we examined the role of Xtr in meiotic progression of oocytes. Microinjection of anti-Xtr antibody into immature oocytes followed by reinitiation of oocyte maturation did not affect germinal vesicle break down and the oscillation of Cdc2/cyclin B activity during meiotic progression but caused abnormal spindle formation and chromosomal alignment at meiotic metaphase I and II. Immunoprecipitation of Xtr showed the association of Xtr with FRGY2 and mRNAs such as RCC1 and XL-INCENP mRNAs, which are involved in the progression of karyokinesis. When anti-Xtr antibody was injected into oocytes, translation of XL-INCENP mRNA, which is known to be repressed in immature oocytes and induced after reinitiation of oocyte maturation, was inhibited even if the oocytes were treated with progesterone. A similar translational regulation was observed in oocytes injected with a reporter mRNA, which was composed of an enhanced green fluorescent protein open reading frame followed by the 3' untranslational region (3'UTR) of XL-INCENP mRNA. These results indicate that Xtr regulates the translation of XL-INCENP mRNA through its 3'UTR during meiotic progression of oocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号