首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photoreceptor phytochrome-A (phyA) regulates germination and seedling establishment by mediating very low fluence (VLFR) and far-red high irradiance (FR-HIR) responses in Arabidopsis thaliana. In darkness, phyA homodimers exist in the biologically inactive Pr form and are localized in the cytoplasm. Light induces formation of the biologically active Pfr form and subsequent rapid nuclear import. PhyA Pfr, in contrast to the Pr form, is labile and has a half-life of ~30 min. We produced transgenic plants in a phyA-201 null background that express the PHYA-yellow fluorescent protein (YFP) or the PHYA686-YFP-dimerization domain (DD) and PHYA686-YFP-DD-nuclear localization signal (NLS) or PHYA686-YFP-DD-nuclear exclusion signal (NES) fusion proteins. The PHYA686-YFP fusion proteins contained the N-terminal domain of phyA (686 amino acid residues), a short DD and the YFP. Here we report that (i) PHYA686-YFP-DD fusion protein is imported into the nucleus in a light-dependent fashion; (ii) neither of the PHYA686 fusion proteins is functional in FR-HIR and nuclear VLFR; and (iii) the phyA-dependent, blue light-induced inhibition of hypocotyl growth is mediated by the PHYA686-YFP-DD-NES but not by the PHYA686-YFP-DD-NLS and PHYA686-YFP-DD fusion proteins. We demonstrate that (i) light induces degradation of all PHYA N-terminal-containing fusion proteins and (ii) these N-terminal domain-containing fusion proteins including the constitutively nuclear PHYA686-YFP-DD-NLS and predominantly cytoplasmic PHYA686-YFP-DD-NES degrade at comparable rates but markedly more slowly than PHYA-YFP, whereas (iii) light-induced degradation of the native phyA is faster compared with PHYA-YFP.  相似文献   

2.
Green fluorescence protein (GFP) has become a widely used reporter in many areas of life science. Monitoring foreign protein expression via GFP fusion is also very appealing for bioprocess applications. GFP itself has been purified from recombinant organisms by several methods, often involving unfavorable conditions (e.g., use of organic solvents and/or low pH) that may be destabilizing to some proteins. In this study, we have developed a general recovery scheme that entails a simple three-step purification procedure for GFP fusion proteins produced in tobacco suspension cells, with the intent of maximizing purity and yield under gentle conditions so as to maintain the integrity of the fusion partner. Ammonium sulfate treatment at 30% (v/v) precipitated particulate matter and removed aggregated material while simultaneously maintaining GFP solubility and increasing hydrophobicity. Hydrophobic interaction chromatography was then performed to eliminate the majority of background proteins while eluting GFP and fusions in a low ionic buffer suitable to be directly applied to an ion-exchange column as the final step. Three intracellular proteins, secreted alkaline phosphatase (SEAP), and granulocyte-macrophage colony-stimulating factor (GMCSF), each fused to GFP, as well as GFP itself, were recovered with yields exceeding 70% and purity levels over 80%. This purification scheme exploits the hydrophobic nature of GFP while maintaining a gentle environment for labile fusion partners. Although some optimization may be required, we believe this scheme may serve as a benchmark for purifying other GFP fusion proteins.  相似文献   

3.
4.
5.
6.
Green fluorescent protein (GFP) allows the direct visualization of gene expression and the subcellular localization of fusion proteins in living cells. The localization of different GFP fusion proteins in the secretory system was studied in stably transformed Arabidopsis plants cv. Wassilewskaja. Secreted GFP (SGFP) and GFP retained in the ER (GFP-KDEL) confirmed patterns already known, but two vacuolar GFPs (GFP-Chi and Aleu-GFP) labelled the Arabidopsis vacuolar system for the first time, the organization of which appears to depend on cell differentiation. GFP stability in the vacuoles may depend on pH or degradation, but these vacuolar markers can, nevertheless, be used as a tool for physiological studies making these plants suitable for mutagenesis and gene-tagging experiments.  相似文献   

7.
A gene family of at least five members encodes the tobacco mitochondrial Rieske Fe-S protein (RISP). To determine whether all five RISPs are translocated to mitochondria, fusion proteins containing the putative presequences of tobacco RISPs and Escherichia coli -glucuronidase (GUS) were expressed in transgenic tobacco, and the resultant GUS proteins were localized by cell fractionation. The aminoterminal 75 and 71 residues of RISP2 and RISP3, respectively, directed GUS import into mitochondria, where fusion protein processing occurred. The amino-terminal sequence of RISP4, which contains an atypical mitochondrial presequence, can translocate the GUS protein specifically into tobacco mitochondria with apparently low efficiency.Consistent with the proposal of a conserved mechanism for protein import in plants and fungi, the tobacco RISP3 and RISP4 presequences can direct import and processing of a GUS fusion protein in yeast mitochondria. Plant presequences, however, direct mitochondrial import in yeast less efficiently than the yeast presequence, indicating subtle differences between the plant and yeast mitochondrial import machineries. Our studies show that import of RISP4 may not require positively charged amino acid residues and an amphipathic secondary structure; however, these structural properties may improve the efficiency of mitochondrial import.  相似文献   

8.
A convenient assay for monitoring nuclear localization signal-mediated nuclear import of green fluorescent protein (GFP)-variant fusion proteins has been developed. This modified assay relies upon indirect immunofluorescence microscopy for visualization of transported substrates. The use of GFP-variant fusion proteins allows for the rapid assessment of optimal digitonin concentration and permits nuclear import to be monitored with minimal sample preparation in real time.  相似文献   

9.
10.
11.
12.
In plants small heat shock proteins (sHsp) are abundantly expressed upon heat stress in vegetative tissue, however, sHsp expression is also developmentally induced in pollen. The developmental induction of sHsp has been related to the potential for stress-induced microspore embryogenesis. We investigated the polymorphism among sHsp and their expression during pollen development and after heat stress in tobacco. Real-time RT-PCR was used for quantification of mRNA of two known and nine newly isolated cDNAs representing cytosolic sHsp. At normal temperature most of these genes are not transcribed in vegetative tissues, however, all genes were expressed during pollen development. Low levels of mRNAs were found for sHsp-1A and -1B in early-unicellular stage, increasing four to sevenfold in mature pollen. Nine other genes are up-regulated in unicellular and down-regulated in bicellular pollen; three these genes show stage-specific expression. Western analysis revealed that cytosolic class I and II sHsp are developmentally expressed during all stages of pollen development. Different subsets of cytosolic sHsp genes are expressed in a stage-specific fashion suggesting that certain sHsp genes may play specific roles in early, others during later stages of pollen development. Heat stress results in a relatively weak and incomplete response in pollen: (i) the heat-induced levels of mRNA (excepting sHsp-2B, −3Cand -6) are much lower than in leaves, (ii) several sHsp are not detected after heat stress in pollen, although, they are heat-inducibly expressed in leaves. Application of heat stress, cold, and starvation, which induce microspore embryogenesis, modify mRNA levels and the patterns of 2-D-separated sHsp, but only heat stress enhances the expression of sHsp in microspores. There is no correlation of the expression of specific sHsp with the potential for microspore embryogenesis.Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

13.
Functional nuclear proteins are selectively imported into the nucleus by transport factors such as importins alpha and beta. The relationship between the efficiency of nuclear protein import and the cell cycle was measured using specific import substrates for the importin alpha/beta-mediated pathway. After the microinjection of SV40 T antigen nuclear localization signal (NLS)-containing substrates into the cytoplasm of synchronized culture cells at a certain phase of the cell cycle, the nuclear import of the substrates was measured kinetically. Cell cycle-dependent change in import efficiency, but not capacity, was found. That is, import efficiency was found low in the early S, G2/M, and M/G1 phases compared with other phases. In addition, we found that the extent of co-imunoprecipitation of importin alpha with importin beta from cell extracts was strongly associated with import efficiency. These results indicate that the importin alpha/beta-mediated nuclear import machinery is regulated in a cell cycle-dependent manner through the modulation of interaction modes between importins alpha and beta.  相似文献   

14.
Glycosyl-phosphatidylinositol (GPI) anchored proteins are surveyed in two insulin sensitive cell types by surface labeling and phospholipase C-induced release into the medium. Serum starvation selectively increases both the number and intensity of a subset of GPI-anchored proteins. After serum starvation, loss of cell-surface GPI-anchored proteins is induced acutely by either serum re-exposure or insulin, suggesting that hormonal treatment may promote the release of these proteins from the cell surface.  相似文献   

15.
16.
The isopentenyl transferase gene (ipt) fromAgrobacterium tumefaciens was isolated and introduced, via a disarmed binary vector, into tobacco using theAgrobacterium tumefaciens-mediated gene transfer system. The expression of theipt gene was monitored by RNA hybridization, western blotting and cytokinin analysis. The addition of auxin to the media rapidly reduced the level of cytokinins in the transgenic tissues and this was associated with a reduction in IPT mRNA and protein levels. It is concluded that the hormone auxin can regulate expression of a gene involved in biosynthesis of the second hormone cytokinin. Although exogenous benzyladenine did not directly affectipt gene expression, it did antagonize the effect of auxin on levels of cytokinins and IPT mRNA and protein.  相似文献   

17.
The glucocorticoid receptor accumulates in nuclei only in the presence of bound hormone, whereas the estrogen receptor has been reported to be constitutively nuclear. To investigate this distinction, we compared the nuclear localization domains of the two receptors and the capacity of their respective hormone-binding regions to regulate nuclear localization activity. As with the glucocorticoid receptor, we showed that the human estrogen receptor contained a nuclear localization signal between the DNA-binding and hormone-binding regions (amino acids 256-303); however, in contrast to the glucocorticoid receptor, the estrogen receptor lacked a second nuclear localization domain within the hormone-binding region. Moreover, the hormone-binding domain of the unliganded estrogen receptor failed to regulate nuclear localization signals, although it efficiently regulated other receptor functions. We conclude that the two receptors employ a common mechanism for signal transduction involving a novel "inactivation" function, but that they differ in their control of nuclear localization. Thus, despite the strong relatedness of the estrogen and glucocorticoid receptors in structure and activity, certain differences in their properties could have important functional implications.  相似文献   

18.
Plants are subject to attack by a wide range of phytopathogens. Current pathogen detection methods and technologies are largely constrained to those occurring post‐symptomatically. Recent efforts were made to generate plant sentinels (phytosensors) that can be used for sensing and reporting pathogen contamination in crops. Engineered phytosensors indicating the presence of plant pathogens as early‐warning sentinels potentially have tremendous utility as wide‐area detectors. We previously showed that synthetic promoters containing pathogen and/or defence signalling inducible cis‐acting regulatory elements (RE) fused to a fluorescent protein (FP) reporter could detect phytopathogenic bacteria in a transient phytosensing system. Here, we further advanced this phytosensing system by developing stable transgenic tobacco and Arabidopsis plants containing candidate constructs. The inducibility of each synthetic promoter was examined in response to biotic (bacterial pathogens) or chemical (plant signal molecules salicylic acid, ethylene and methyl jasmonate) treatments using stably transgenic plants. The treated plants were visualized using epifluorescence microscopy and quantified using spectrofluorometry for FP synthesis upon induction. Time‐course analyses of FP synthesis showed that both transgenic tobacco and Arabidopsis plants were capable to respond in predictable ways to pathogen and chemical treatments. These results provide insights into the potential applications of transgenic plants as phytosensors and the implementation of emerging technologies for monitoring plant disease outbreaks in agricultural fields.  相似文献   

19.
The UV-A/blue light photoreceptor crytochrome2 (cry2) plays a fundamental role in the transition from the vegetative to the reproductive phase in the facultative long-day plant Arabidopsis thaliana. The cry2 protein level strongly decreases when etiolated seedlings are exposed to blue light; cry2 is first phosphorylated, polyubiquitinated, and then degraded by the 26S proteasome. COP1 is involved in cry2 degradation, but several cop1 mutants show only reduced but not abolished cry2 degradation. SUPPRESSOR OF PHYA-105 (SPA) proteins are known to work in concert with COP1, and recently direct physical interaction between cry2 and SPA1 was demonstrated. Thus, we hypothesized that SPA proteins could also play a role in cry2 degradation. To this end, we analyzed cry2 protein levels in spa mutants. In all spa mutants analyzed, cry2 degradation under continuous blue light was alleviated in a fluence rate-dependent manner. Consistent with a role of SPA proteins in phytochrome A (phyA) signaling, a phyA mutant had enhanced cry2 levels, particularly under low fluence rate blue light. Fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy studies showed a robust physical interaction of cry2 with SPA1 in nuclei of living cells. Our results suggest that cry2 stability is controlled by SPA and phyA, thus providing more information on the molecular mechanisms of interaction between cryptochrome and phytochrome photoreceptors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号