首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The toxicity of 3H-5-iodo-2′-deoxyuridine (3H-IUdR) was evaluated by injecting tumor-bearing C3H mice with different concentrations of ethanol (the solvent), different doses of tritium tagged onto either IUdR or thymidine and different chemical doses of IUdR, and then measuring the 3H-IUdR incorporation into duodenal and mammary tumor DNA as well as the cellular kinetics of duodenal crypt cells. Ethanol (37% or less, 0.2 ml/mouse) does not significantly inhibit IUdR incorporation into DNA, and the incorporation after a tritium dose of 75 μCi 3H-IUdR/mouse (about 3 μCi/g body weight) is not less than the incorporation following an injection of 25 μCi 3H-IUdR/mouse when the IUdR dose is below 0.005 μmole per mouse. The toxic effects are primarily due to chemical toxicity from IUdR per se. IUdR, at doses of 0.2 μmoles per mouse does inhibit IUdR incorporation into duodenal and tumor DNA, and the duodenal labeling index and the fraction of labeled mitoses are significantly reduced when 0.013 μmole IUdR per mouse is injected. Also some of the duodenal cells containing IUdR apparently undergo only one post-labeling division and the generation time (Tc) of the cells containing IUdR (25 μCi 3H-IUdR/mouse) is 15.3 hr as compared to 13.3 hr for cells labeled with 3H-T (75 μCi/mouse). This increase in Tc is probably not statistically significant; nevertheless, these results do indicate that one must be exceedingly cautious when using 3H-IUdR as a radiotracer for studies concerned with in vivo cellular kinetics and, at least for C3H mice, the dose should be less than 0.01 μmole per 25 g mouse.  相似文献   

2.
The incorporation of tritiated thymidine by five microbial ecosystems and the distribution of tritium into DNA, RNA, and protein were determined. All microbial assemblages tested exhibited significant labeling of RNA and protein (i.e., nonspecific labeling), as determined by differential acid-base hydrolysis. Nonspecific labeling was greatest in sediment samples, for which ≥95% of the tritium was recovered with the RNA and protein fractions. The percentage of tritium recovered in the DNA fraction ranged from 15 to 38% of the total labeled macromolecules recovered. Nonspecific labeling was independent of both incubation time and thymidine concentration over very wide ranges. Four different RNA hydrolysis reagents (KOH, NaOH, piperidine, and enzymes) solubilized tritium from cold trichloroacetic acid precipitates. High-pressure liquid chromatography separation of piperidine hydrolysates followed by measurement of isolated monophosphates confirmed the labeling of RNA and indicated that tritium was recovered primarily in CMP and AMP residues. We also evaluated the specificity of [2-3H]adenine incorporation into adenylate residues in both RNA and DNA in parallel with the [3H]thymidine experiments and compared the degree of nonspecific labeling by [3H]adenine with that derived from [3H]thymidine. Rapid catabolism of tritiated thymidine was evaluated by determining the disappearance of tritiated thymidine from the incubation medium and the appearance of degradation products by high-pressure liquid chromatography separation of the cell-free medium. Degradation product formation, including that of both volatile and nonvolatile compounds, was much greater than the rate of incorporation of tritium into stable macromolecules. The standard degradation pathway for thymidine coupled with utilization of Krebs cycle intermediates for the biosynthesis of amino acids, purines, and pyrimidines readily accounts for the observed nonspecific labeling in environmental samples.  相似文献   

3.
The disruption of erythyrocyte membrane cytoskeletons brought about by treatment with p-mercuribenzene sulphonate (PMBS) has been followed by measurements of turbidity and the binding of 203Hg-labelled PMBS. After pretreatment with N-ethylmaleimide to block readily reactive sulphydryl groups, incubation with [203Hg]PMBS showed incorporation of approximately 4 moles radiolabel per mole of spectrin and one per mole of actin. The incorporation of radiolabel paralleled the decrease in turbidity, and the labelling of spectrin paralleled that of actin. The kinetics were pseudo first order, and the pH dependence of the observed rate constant indicated a normal pKa value for the sulphydryl group involved. The calculated second-order rate constant for the reaction of the sulphydryl anion with PMBS, however, was several orders of magnitude less than expected from model compound studies. The results suggest that association between spectrin and actin may result in the steric hindrance of reactivity of a limited number of sulphydryl groups in each protein. Disruption of the spectrin-actin association may then be linked to the modification of the sulphydryl groups.  相似文献   

4.
GTP-dependent in vitro polymerization of rat brain microtubular protein is inhibited to 50% by substoichiometric concentrations of the antimitotic drugs colchicine (0.12 mol/mol of tubulin) and podophyllotoxin (0.14 mol/mol of tubulin). Substitution of pp(CH2)pG2 for GTP, however, results in an extensive microtubular protein polymerization at such concentrations. In the presence of pp(CH2)pG, suprastoichiometric concentrations of podophyllotoxin (19 mol/mol of tubulin) are required to inhibit the polymerization process by 50%. Colchicine is very ineffective since 3 × 105 moles/mole of tubulin are required to give a 50% inhibition. Electron microscopical analysis shows that the polymers formed by microtubular protein in the presence of suprastoichiometric concentrations of drugs are not the normal short microtubules typical of pp(CH2)pG-driven polymerization, but are ribbons with three or four protofilaments. The colchicine content of the harvested ribbons has been measured directly and found to be approximately 0.8 moles colchicine/mole of tubulin. Treatment of microtubular protein with substoichiometric concentrations of drugs results in an increase in the number of protofilaments forming the ribbons. Many of the ribbons can close into morphologically normal microtubules when microtubular protein is treated with only 0.05 moles of either colchicine or podophyllotoxin per mole of tubulin.  相似文献   

5.
The incorporation of 14C-tyrosine into S-RNA catalyzed by a partially purified tyrosine activating enzyme from baker’s yeast was observed. The maximum incorporation was shown in the presence of 5 μmoles of ATP, 10 μmoles of MgCl2 and 10~100 μmoles of KCl in the reaction mixture of total volume of 1ml, at pH 7.8 when 1.2 mg of S-RNA, 0.1 μmole of 14C-tyrosine and 400 μg of enzyme protein were used. Beyond the concentration of ATP, MgCl2 and KCl described above, the tendency of inhibition was observed. The incorporation was strongly inhibited by pCMB and reactivated by cysteine. Manganese and calcium ions were effective as substitutes for magnesium. S-RNA used was prepared from whole baker’s yeast cell with phenol, but S-RNA obtained from the supernatant of the ground yeast had lost its incorporating activity.  相似文献   

6.
Bilayer liposomes from a mixture of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine (DPPC:DPPE=8:2, molar ratio) or DPPC labeled with 14C-DPPC (DPPC:14C-DPPC) were bombarded with thermally activated tritium atoms. The tritiated liposomes were hydrolyzed by phospholipase C, and the tritium incorporation into different parts of the bilayer along its thickness was determined. The tritium flux attenuation coefficients were calculated for the headgroup (k1=0.176±0.032 Å–1) and acylglycerol residue (k2=0.046±0.004 Å–1) layers indicating a preferential attenuation of the tritium flux in the headgroup region and relative transparence of the membrane hydrophobic part. The finding is potentially important to apply tritium bombardment for investigation of spatial organization of transmembrane proteins in their native lipid environment.  相似文献   

7.
The disruption of erythyrocyte membrane cytoskeletons brought about by treatment with p-mercuribenzene sulphonate (PMBS) has been followed by measurements of turbidity and the binding of 203Hg-labelled PMBS. After pretreatment with N-ethylmaleimide to block readily reactive sulphydryl groups, incubation with [203Hg]PMBS showed incorporation of approximately 4 moles radiolabel per mole of spectrin and one per mole of actin. The incorporation of radiolabel paralleled the decrease in turbidity, and the labelling of spectrin paralleled that of actin. The kinetics were pseudo first order, and the pH dependence of the observed rate constant indicated a normal pKa value for the sulphydryl group involved. The calculated second-order rate constant for the reaction of the sulphydryl anion with PMBS, however, was several orders of magnitude less than expected from model compound studies. The results suggest that association between spectrin and actin may result in the steric hindrance of reactivity of a limited number of sulphydryl groups in each protein. Disruption of the spectrin-actin association may then be linked to the modification of the sulphydryl groups.  相似文献   

8.
Two major forms of plasminogen exist in the plasma of many animal species and are distinguished by their affinities for certain antifibrinolytic amino acids. Quantitative end group analysis demonstrated that each isolated form of rabbit plasminogen possessed a single amino terminal residue of glutamic acid. Amino acid sequence analysis indicated that at least the first twelve amino terminal amino acids were identical in the two forms. The unique amino terminal sequence obtained for each form was NH2-glu-pro-leu-asp-asp-tyr-val-asn-thr-gln-gly-ala-. Analysis of the carbohydrate content of each major plasminogen form revealed some striking differences. The first major form of rabbit plasminogen isolated from affinity chromatography columns contained 1.5–1.7 percent neutral carbohydrate and 3.0–3.3 moles of sialic acid per mole of protein. The second major form of rabbit plasminogen isolated from affinity chromatography columns contained 0.6–0.8 percent neutral carbohydrate and 1.8–2.2 moles of sialic acid per mole of protein.  相似文献   

9.
The catalytic subunit of cyclic AMP-dependent protein kinase catalyzes the phosphorylation of rabbit skeletal muscle phosphofructokinase. The reaction is inhibited by the specific inhibitor of protein kinase and proceeds at about 2% the rate observed with phosphorylase kinase but more rapidly than with rat liver fructose bisphosphatase as substrate. Maximum extent of incorporation (0.43 to 0.85 moles per mole of protomer) plus the covalently-bound phosphate present in the isolated enzyme (0.20 to 0.34 moles per mole) approaches one mole per mole.  相似文献   

10.
Summary The potent and specific inhibitor of anion permeability, 4,4-diisothicyanostilbene-2,2-disulfonic acid (DIDS) was synthesized in tritiated form ([3H]DIDS) from tritiated 5-nitrotoluene-o-sulfonic acid. Its reactions with and effects on red blood cells were compared with those of a reduced form ([3H]H2DIDS), previously used as a tracer for DIDS. The rate of covalent reaction of [3H]DIDS was substantially faster than that of [3H]H2DIDS at all temperatures tested. With both agents, the rate of reaction was increased in alkaline media, although the response occurred at a lower pH with [3H]DIDS. On the other hand, the relationship of irreversible membrane binding to the degree of inhibition of sulfate fluxes was linear and virtually the same for both agents, with 100% inhibition associated with the binding of approximately 1.2×106 molecules per cell. About 90% of the binding for each probe was to a particular membrane protein, known as band 3, equivalent to about 1 mole of agent per mole of protein.  相似文献   

11.
The activating factor of ATP·Mg-dependent protein phosphatase (F A) has been identified in brain microtubules. When using purified MAP-2 (microtubule associated protein 2) and tau proteins as substrates,F A could phosphorylate MAP-2 to 16 moles of phosphates per mole of protein with aK m value of 0.4 µM, and tau proteins to 4 moles of phosphates per mole of proteins with aK m value of about 3 µM. When using microtubules as substrates,F A could enhance many-fold the endogenous phosphorylation of many microtubule-associated proteins including MAP-2, tau proteins, and several low-molecular-weight MAPs. In contrast to other reported MAP kinases, such as cAMP-dependent protein kinase and Ca+2/phospholipid-dependent protein kinase, theF A-catalyzed phosphorylation of tau proteins could cause an electrophoretic mobility shift on sodium dodecyl sulfate polyacrylamide gel electrophoresis, suggesting that a dramatic conformational change of tau proteins was produced byF A. Peptide mapping analysis of the phosphopeptides derived from SV8 protease digestion revealed thatF A could phosphorylate MAP-2 and tau proteins on at least four specific sites distinctly different from those phosphorylated by cAMP-dependent and Ca+2/phospholipid-dependent MAP kinases. Quantitative analysis further indicated that approximately 19% of the total endogenous kinase activity in brain microtubules was due toF A. Taken together, the results provide initial evidence that the ATP·Mg-dependent protein phosphatase activating factor (F A) is a potent and unique MAP kinase, and may represent one of the major factors involved in phosphorylation of brain microtubules.  相似文献   

12.
Water enriched with H2, 18O was used to probe the possible existence in solution of nonexchangeable water molecules in the interior of chymotrypsinogen that has been suggested by crystallographic studies. Although 10 nonexchangeable water molecules per chymotrypsinogen molecule are expected based on the crystallographic results, no nonexchangeable waters are observed for dissolved chymotrypsinogen within the limits of detection (0.5 μmoles of water per μmole of protein).  相似文献   

13.
The incorporation of [35S]methionine into ovalbumin, a protein containing NH2-terminal N-acetylglycine, has been studied in chicken oviduct magnum cells. The purification of [35S]methionine-labeled ovalbumin from total oviduct proteins was accomplished by dialysis of a crude extract at pH 3.6 followed by chromatography on carboxymethyl cellulose. The radioactive ovalbumin eluted from the column in three peaks (P0, P1, and P2-containing 0, 1, and 2 moles of phosphate, respectively, per mole of ovalbumin). The kinetics of labeling of peaks P0 and P1 showed that the ratio of radioactivity in NH2-terminal methionine to total incorporation was greater at 2 min of labeling than at later times. The transient labeling of the NH2-terminus of ovalbumin with methionine indicates that methionine is the initiator amino acid for the synthesis of this protein, which in its mature form contains NH2-terminal N-acetylglycine.  相似文献   

14.
The establishment and maintenance of high rates of photosynthetic CO2 incorporation in mesophyll cells of Papaver somniferum (opium poppy) depend on a regime of dark and light periods immediately following isolation, as well as carefully adjusted conditions of isolation. Analysis of the incorporation pattern of 14CO2 by the isolated cells indicates an initial “stress-response” period of approximately 20 hours characterized by increased respiratory-type metabolism and diminished photosynthesis. Under the favorable regime, this period is followed by rapid recovery and the reinstatement of a metabolic state strikingly similar to that of intact leaves in which the initial rate of CO2 incorporation is between 110 and 175 μmoles CO2 fixed per mg chlorophyll per hour. The photosynthetic viability of these cells can be maintained for up to 80 hours.  相似文献   

15.
The anaerobic photodissimilation of acetate by Chlamydomonas reinhardii F-60 adapted to a hydrogen metabolism was studied utilizing manometric and isotopic techniques. The rate of photoanaerobic (N2) acetate uptake was approximately 20 μmoles per milligram chlorophyll per hour or one-half that of the photoaerobic (air) rate. Under N2, cells produced 1.7 moles H2 and 0.8 mole CO2 per mole of acetate consumed. Gas production and acetate uptake were inhibited by monofluoroacetic acid (MFA), 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea (DCMU) and by H2. Acetate uptake was inhibited about 50% by 5% H2 (95% N2). H2 in the presence of MFA or DCMU stimulated acetate uptake and the result was interpreted to indicate a transition from oxidative to reductive metabolism. Carbon-14 from both [1-14C]- and [2-14C]acetate was incorporated under N2 or H2 into CO2, lipids, and carbohydrates. The methyl carbon of acetate accumulated principally (75-80%) in the lipid and carbohydrate fractions, whereas the carboxyl carbon contributed isotope primarily to CO2 (56%) in N2. The presence of H2 caused a decrease in carbon lost from the cell as CO2 and a greater proportion of the acetate was incorporated into lipid. The results support the occurrence of anaerobic and light-dependent citric acid and glyoxylate cycles which affect the conversion of acetate to CO2 and H2 prior to its conversion to cellular material.  相似文献   

16.
A kinetic model that describes substrate interactions during reductive dehalogenation reactions is developed. This model describes how the concentrations of primary electron-donor and -acceptor substrates affect the rates of reductive dehalogenation reactions. A basic model, which considers only exogenous electron-donor and -acceptor substrates, illustrates the fundamental interactions that affect reductive dehalogenation reaction kinetics. Because this basic model cannot accurately describe important phenomena, such as reductive dehalogenation that occurs in the absence of exogenous electron donors, it is expanded to include an endogenous electron donor and additional electron acceptor reactions. This general model more accurately reflects the behavior that has been observed for reductive dehalogenation reactions. Under most conditions, primary electron-donor substrates stimulate the reductive dehalogenation rate, while primary electron acceptors reduce the reaction rate. The effects of primary substrates are incorporated into the kinetic parameters for a Monod-like rate expression. The apparent maximum rate of reductive dehalogenation (q m, ap ) and the apparent half-saturation concentration (K ap ) increase as the electron donor concentration increases. The electron-acceptor concentration does not affect q m, ap , but K ap is directly proportional to its concentration.Definitions for model parameters RX halogenated aliphatic substrate - E-M n reduced dehalogenase - E-M n+2 oxidized dehalogenase - [E-M n ] steady-state concentration of the reduced dehalogenase (moles of reduced dehalogenase per unit volume) - [E-M n+2] steady-state concentration of the oxidized dehalogenase (moles of reduced dehalogenase per unit volume) - DH2 primary exogenous electron-donor substrate - A primary exogenous electron-acceptor substrate - A2 second primary exogenous electron-acceptor substrate - X biomass concentration (biomass per unit volume) - f fraction of biomass that is comprised of the dehalogenase (moles of dehalogenase per unit biomass) - stoichiometric coefficient for the reductive dehalogenation reaction (moles of dehalogenase oxidized per mole of halogenated substrate reduced) - stoichiometric coefficient for oxidation of the primary electron donor (moles of dehalogenase reduced per mole of donor oxidized) - stoichiometric coefficient for oxidation of the endogenous electron donor (moles of dehalogenase reduced per unit biomass oxidized) - stoichiometric coefficient for reduction of the primary electron acceptor (moles of dehalogenase oxidized per mole of acceptor reduced) - stoichiometric coefficient for reduction of the second electron acceptor (moles of dehalogenase oxidized per mole of acceptor reduced) - r RX rate of the reductive dehalogenation reaction (moles of halogenated substrate reduced per unit volume per unit time) - r d1 rate of oxidation of the primary exogenous electron donor (moles of donor oxidized per unit volume per unit time) - r d2 rate of oxidation of the endogenous electron donor (biomass oxidized per unit volume per unit time) - r a1 rate of reduction of the primary exogenous electron acceptor (moles of acceptor reduced per unit volume per unit time) - r a2 rate of reduction of the second primary electron acceptor (moles of acceptor reduced per unit volume per unit time) - k RX mixed second-order rate coefficient for the reductive dehalogenation reaction (volume per mole dehalogenase per unit time) - k d1 mixed-second-order rate coefficient for oxidation of the primary electron donor (volume per mole dehalogenase per unit time) - k d2 mixed-second-order rate coefficient for oxidation of the endogenous electron donor (volume per mole dehalogenase per unit time) - b first-order biomass decay coefficient (biomass oxidized per unit biomass per unit time) - k a1 mixed-second-order rate coefficient for reduction of the primary electron acceptor (volume per mole dehalogenase per unit time) - k a2 mixed-second-order rate coefficient for reduction of the second primary electron acceptor (volume per mole dehalogenase per unit time) - q m,ap apparent maximum specific rate of reductive dehalogenation (moles of RX per unit biomass per unit time) - K ap apparent half-saturation concentration for the halogenated aliphatic substrate (moles of RX per unit volume) - k ap apparent pseudo-first-order rate coefficient for reductive dehalogenation (volume per unit biomass per unit time)  相似文献   

17.
18.
Commercial zein was base-hydrolyzed and purified extracts were subjected to gas chromatography-selected ion monitoring-mass spectrometry analysis. Indoleacetic acid (IAA) was shown to be released from this storage protein of corn (Zea mays). Isotope dilution using [13C6]IAA as an internal standard revealed a conservative ratio of 1 mole IAA to 175 moles zein. Immunoelectron micrographs of isolated protein bodies also showed IAA or an IAA-like molecule associated with zein and deposited within these organelles.  相似文献   

19.
Young bell pepper (Capsicum annuum L.) plants grown in nutrient solution were gradually acclimated to 50, 100, or 150 moles per cubic meter NaCl, and photosynthetic rates of individual attached leaves were measured on several occasions during the salinization period at external CO2 concentrations ranging from approximately 70 to 1900 micromoles per mole air. Net CO2 assimilation (A) was plotted against computed leaf internal CO2 concentration (Ci), and the initial slope of this A-Ci curve was used as a measure of photosynthetic ability. During the 10 to 14 days after salinization began, leaves from plants exposed to 50 moles per cubic meter NaCl showed little change in photosynthetic ability, whereas those treated to 100 or 150 moles per cubic meter NaCl had up to 85% inhibition, with increase in CO2 compensation point. Leaves appeared healthy, and leaf chlorophyll content showed only a 14% reduction at the highest salinity levels. Partial stomatal closure occurred with salinization, but reductions in photosynthesis were primarily nonstomatal in origin. Photosynthetic ability was inversely related to the concentration of either Na+ or Cl in the leaf laminas sampled at the end of the experimental period. However, the concentration of Cl expressed on a tissue water basis was greater, exceeding 300 moles per cubic meter, and Cl was more closely associated (R2 = 0.926) with the inhibition of photosynthetic ability. Leaf turgor was not reduced by salinization and leaf osmotic potential decreased to a slightly greater extent than the osmotic potential decreases of the nutrient solutions. Concentration of accumulated Na+ and Cl (on a tissue water basis) accounted quantitatively for maintenance of leaf osmotic balance, assuming that these ions were sequestered in the vacuoles.  相似文献   

20.
Succinate dehydrogenase has been solubilized from R. rubrum chromatophores with the use of chaotropic agents, and purified approximately 80-fold. The preparation (SDr) contains 8 g-atoms of iron per mole of flavin, and has a turnover number of approximately 4000 (moles succinate oxidized by ferricyanide or phenazine methosulfate/mole of flavin/min at 38 °C). Its absorption and EPR spectra are similar to those of bovine heart succinate dehydrogenase. SDr can cross-interact with the bovine heart electron-transport system (alkali-inactivated ETP) and reconstitute succinoxidase activity with an efficiency comparable to the reconstitution activity of purified bovine heart succinate dehydrogenase. Preliminary results suggest that SDr has a molecular weight of approximately 85,000, and that it is composed of a flavoprotein subunit with a molecular weight of approximately 60,000, plus a second subunit (possibly an iron-sulfur protein) with a molecular weight of approximately 25,000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号