首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we used denaturing gradient gel electrophoresis, sequencing analysis, and analytical flow cytometry to monitor the dynamics and genetic richness of Emiliania huxleyi isolates and cooccurring viruses during two mesocosm experiments in a Norwegian fjord in 2000 and 2003. We exploited variations in a gene encoding a protein with calcium-binding motifs (GPA) and in the major capsid protein (MCP) gene to assess allelic and genotypic richness within E. huxleyi and E. huxleyi-specific viruses (EhVs), respectively. To our knowledge, this is the first report that shows the effectiveness of the GPA gene for analysis of natural communities of E. huxleyi. Our results revealed the existence of a genetically rich, yet stable E. huxleyi and EhV community in the fjordic environment. Incredibly, the same virus and host genotypes dominated in separate studies conducted 3 years apart. Both E. huxleyi-dominated blooms contained the same six E. huxleyi alleles. In addition, despite the presence of at least six and four EhV genotypes at the start of the blooms in 2000 and 2003, respectively, the same two virus genotypes dominated the naturally occurring infections during the exponential and termination phases of the blooms in both years.  相似文献   

2.
Denaturing gradient gel electrophoresis was used as a molecular tool to determine the diversity and to monitor population dynamics of viruses that infect the globally important coccolithophorid Emiliania huxleyi. We exploited variations in the major capsid protein gene from E. huxleyi-specific viruses to monitor their genetic diversity during an E. huxleyi bloom in a mesocosm experiment off western Norway. We reveal that, despite the presence of several virus genotypes at the start of an E. huxleyi bloom, only a few virus genotypes eventually go on to kill the bloom.  相似文献   

3.
Monitoring of the Black Sea algal viruses in Sevastopol bays and Crimean water areas has been carried out since 2002. Based on the methods that were developed and patented by the author, more than 200 strains of algal viruses of five species of microalgae that are new to science were isolated: TvV (Tetraselmis viridis virus), DvV (Dunaliella viridis virus), PtV (Phaeodactylum tricornutum virus), PpV (Prorocentrum pusillum virus) and IgV (Isochrysis galbana virus). For the first time in the Black Sea, the Emiliania huxleyi virus (EhV) of microalgae was isolated. Using the method of electron microscopy, the Black Sea algal viruses were identified as icosahedral virions with respective sizes of 56–60, 45–48, 50–53, 88–92, and 128–132 nm, for the TvV, PtV, DvV, PpV and IgV viruses. The EhV size, as determined by the method of filtration, was within the range of 50–200 nm. In the IgV and EhV viruses we revealed a viral envelope. Based on their characters the isolated algal viruses were attributed to the Phycodnaeviridae. The maximum number of algal viruses was observed in the spring and autumn seasons, which is typical for their host phytoplankton species. The Black Sea algal viruses, TvV, PpV, IgV, and EhV, displayed no strict species specificity and have a wide range of available hosts.  相似文献   

4.
The isolation and characterization of a virus (designated EhV) that infects the marine coccolithophorid Emiliania huxleyi (Lohmann) Hay & Mohler are described. Three independent clones of EhV were isolated from Norwegian coastal waters in years 1999 and 2000. EhV is a double‐stranded DNA‐containing virus with a genome size of ~415 kilo‐base pairs. The viral particle is an icosahedron with a diameter of 160–180 nm. The virus particle contains at least nine proteins ranging from 10 to 140 kDa; the major capsid protein weighs ~54 kDa. EhV has a latent period of 12–14 h and a burst size of 400–1000 (mean, 620) viral particles per cell. A phylogenetic tree based on DNA polymerase amino acid sequences indicates EhV should be assigned to the Phycodnaviridae virus family and that the virus is most closely related to viruses that infect Micromonas pusilla and certain Chlorella species.  相似文献   

5.
Coccolithoviruses (EhVs) are large, double-stranded DNA-containing viruses that infect the single-celled, marine coccolithophore Emiliania huxleyi. Given the cosmopolitan nature and global importance of E. huxleyi as a bloom-forming, calcifying, photoautotroph, E. huxleyi–EhV interactions play a key role in oceanic carbon biogeochemistry. Virally-encoded glycosphingolipids (vGSLs) are virulence factors that are produced by the activity of virus-encoded serine palmitoyltransferase (SPT). Here, we characterize the dynamics, diversity and catalytic production of vGSLs in an array of EhV strains in relation to their SPT sequence composition and explore the hypothesis that they are a determinant of infectivity and host demise. vGSL production and diversity was positively correlated with increased virulence, virus replication rate and lytic infection dynamics in laboratory experiments, but they do not explain the success of less-virulent EhVs in natural EhV communities. The majority of EhV-derived SPT amplicon sequences associated with infected cells in the North Atlantic derived from slower infecting, less virulent EhVs. Our lab-, field- and mathematical model-based data and simulations support ecological scenarios whereby slow-infecting, less-virulent EhVs successfully compete in North Atlantic populations of E. huxleyi, through either the preferential removal of fast-infecting, virulent EhVs during active infection or by having access to a broader host range.  相似文献   

6.
Annual Emiliania huxleyi blooms (along with other coccolithophorid species) play important roles in the global carbon and sulfur cycles. E. huxleyi blooms are routinely terminated by large, host-specific dsDNA viruses, (Emiliania huxleyi Viruses; EhVs), making these host-virus interactions a driving force behind their potential impact on global biogeochemical cycles. Given projected increases in sea surface temperature due to climate change, it is imperative to understand the effects of temperature on E. huxleyi’s susceptibility to viral infection and its production of climatically active dimethylated sulfur species (DSS). Here we demonstrate that a 3°C increase in temperature induces EhV-resistant phenotypes in three E. huxleyi strains and that successful virus infection impacts DSS pool sizes. We also examined cellular polar lipids, given their documented roles in regulating host-virus interactions in this system, and propose that alterations to membrane-bound surface receptors are responsible for the observed temperature-induced resistance. Our findings have potential implications for global biogeochemical cycles in a warming climate and for deciphering the particular mechanism(s) by which some E. huxleyi strains exhibit viral resistance.  相似文献   

7.
We studied the temporal succession of vertical profiles of Emiliania huxleyi and their specific viruses (EhVs) during the progression of a natural phytoplankton bloom in the North Sea in June 1999. Genotypic richness was assessed by exploiting the variations in a gene encoding a protein with calcium-binding motifs (GPA) for E.?huxleyi and in the viral major capsid protein gene for EhVs. Using denaturing gradient gel electrophoresis and sequencing analysis, we showed at least three different E.?huxleyi and EhV genotypic profiles during the period of study, revealing a complex, and changing assemblage at the molecular level. Our results also indicate that the dynamics of EhV genotypes reflect fluctuations in abundance of potential E.?huxleyi host cells. The presence and concentration of specific EhVs in the area prior to the bloom, or EhVs transported into the area by different water masses, are significant factors affecting the structure and intraspecific succession of E.?huxleyi during the phytoplankton bloom.  相似文献   

8.
9.
Studies of the Phycodnaviridae have traditionally relied on the DNA polymerase (pol) gene as a biomarker. However, recent investigations have suggested that the major capsid protein (MCP) gene may be a reliable phylogenetic biomarker. We used MCP gene amplicons gathered across the North Atlantic to assess the diversity of Emiliania huxleyi-infecting Phycodnaviridae. Nucleotide sequences were examined across >6000 km of open ocean, with comparisons between concentrates of the virus-size fraction of seawater and of lysates generated by exposing host strains to these same virus concentrates. Analyses revealed that many sequences were only sampled once, while several were over-represented. Analyses also revealed nucleotide sequences distinct from previous coastal isolates. Examination of lysed cultures revealed a new richness in phylogeny, as MCP sequences previously unrepresented within the existing collection of E. huxleyi viruses (EhV) were associated with viruses lysing cultures. Sequences were compared with previously described EhV MCP sequences from the North Sea and a Norwegian Fjord, as well as from the Gulf of Maine. Principal component analysis indicates that location-specific distinctions exist despite the presence of sequences common across these environments. Overall, this investigation provides new sequence data and an assessment on the use of the MCP gene.  相似文献   

10.
11.
As part of their strategy to infect the globally important coccolithophore, Emiliania huxleyi (Lohmann) W.W. Hay & H.P. Mohler, Coccolithoviruses trigger and regulate the host's programmed cell death (PCD) machinery during lytic infection. The induction and recruitment of host metacaspases, specialized, ancestral death proteases that facilitate viral lysis, suggests they may be important subcellular determinants to infection. We examined the “basal” levels and patterns of caspase activity and metacaspase expression in exponentially growing resistant and sensitive E. huxleyi strains and linked them with susceptibility to E. huxleyi virus 1 (EhV1). Resistant E. huxleyi strains were consistently characterized by low caspase specific activity and a relatively simple metacaspase expression profile. In contrast, sensitive E. huxleyi strains had markedly elevated caspase specific activity and consistently expressed more diverse metacaspase proteins. Using pooled data sets from triplicate experiments, we observed statistically significant linear correlations between infectivity, caspase activity, and metacaspase expression, with each strain forming distinct clusters, within a gradient in viral susceptibility. At the same time, we observed positive correlations between the expression of a subset of metacaspase proteins and lower susceptibility, suggestive of potential protective roles. Our findings implicate the importance of subtle differences in the basal physiological regulation of the PCD machinery to viral resistance or sensitivity and cell fate.  相似文献   

12.
海洋球石藻(Coccolithophores)是一种全球广泛分布且具有重要生态功能的真核浮游植物,有些种类是大洋和近岸常见的赤潮种。自然海域中,病毒感染是导致球石藻死亡和赤潮消亡的一个关键因素。基于一株海洋球石藻Emiliania huxleyi及其特异性裂解病毒全基因组测序注释的结果,研究者们发现病毒可能通过基因横向转移从宿主基因组中获取了一系列与鞘脂类代谢相关的关键酶基因,进而在一定程度上掌控了宿主鞘脂类代谢,大量合成、积累病毒性鞘脂类物质,并最终诱导宿主细胞以凋亡的形式死亡。因此,病毒介导的宿主鞘脂类代谢在调节病毒与宿主间相互作用中具有重要意义。本文着重综述海洋球石藻病毒与宿主间的基因横向转移、病毒介导的宿主鞘脂类代谢特点及其生态学意义,以期深入了解海洋球石藻病毒与宿主间复杂的相互作用关系。  相似文献   

13.
Two prominent characteristics of marine coccolithophores are their secretion of coccoliths and their susceptibility to infection by coccolithoviruses (EhVs), both of which display variation among cells in culture and in natural populations. We examined the impact of calcification on infection by challenging a variety of Emiliania huxleyi strains at different calcification states with EhVs of different virulence. Reduced cellular calcification was associated with increased infection and EhV production, even though calcified cells and associated coccoliths had significantly higher adsorption coefficients than non-calcified (naked) cells. Sialic acid glycosphingolipids, molecules thought to mediate EhV infection, were generally more abundant in calcified cells and enriched in purified, sorted coccoliths, suggesting a biochemical link between calcification and adsorption rates. In turn, viable EhVs impacted cellular calcification absent of lysis by inducing dramatic shifts in optical side scatter signals and a massive release of detached coccoliths in a subpopulation of cells, which could be triggered by resuspension of healthy, calcified host cells in an EhV-free, ‘induced media’. Our findings show that calcification is a key component of the E. huxleyi-EhV arms race and an aspect that is critical both to the modelling of these host–virus interactions in the ocean and interpreting their impact on the global carbon cycle.  相似文献   

14.
Changes in phytoplankton community composition potentially affect the entire marine food web. Because of seasonal cycles and inter-annual variations in species composition, long-term monitoring, covering many sequential years, is required to establish a baseline study and to reveal long-term trends. The current study describes the phytoplankton biomass variations and species composition in relation to hydrographic and meteorological conditions in the Raunefjord, western Norway, over a 6-year period from 2001 to 2006. The extent of inflow or upwelling in the fjord varied from year to year and resulted in pronounced differences in water column stability. The annual phytoplankton community succession showed some repeated seasonal patterns, but also high variability between years. Two to four diatom blooms were observed per year, and the spring blooms occurring before water column stratification in March were dominated by Skeletonema marinoi and Chaetoceros socialis, and other Chaetoceros and Thalassiosira spp. Blooms of the haptophytes Phaeocystis pouchetii and Emiliania huxleyi were irregular and in some years totally absent. Although E. huxleyi was present all year round it appeared in bloom concentrations only in 2003, when the summer was warm and the water column characterized by high surface temperatures and pronounced stratification. The annual average abundance of both diatoms and flagellates increased during the six years. Despite the high variation from year to year, our investigation provides valuable knowledge about annual phytoplankton community patterns in the region, and can be used as a reference to detect possible future changes.  相似文献   

15.
16.
During cruises in the tropical Atlantic Ocean (January to February 2000) and the southern North Sea (December 2000), experiments were conducted to monitor the impact of virioplankton on archaeal and bacterial community richness. Prokaryotic cells equivalent to 10 to 100% of the in situ abundance were inoculated into virus-free seawater, and viruses equivalent to 35 to 360% of the in situ abundance were added. Batch cultures with microwave-inactivated viruses and without viruses served as controls. The apparent richness of archaeal and bacterial communities was determined by terminal restriction fragment length polymorphism (T-RFLP) analysis of PCR-amplified 16S rRNA gene fragments. Although the estimated richness of the prokaryotic communities generally was greatly reduced within the first 24 h of incubation due to confinement, the effects of virus amendment were detected at the level of individual operational taxonomic units (OTUs) in the T-RFLP patterns of both groups, Archaea and Bacteria. One group of OTUs was detected in the control samples but was absent from the virus-treated samples. This negative response of OTUs to virus amendment probably was caused by viral lysis. Additionally, we found OTUs not responding to the amendments, and several OTUs exhibited variable responses to the addition of inactive or active viruses. Therefore, we conclude that individual members of pelagic archaeal and bacterial communities can be differently affected by the presence of virioplankton.  相似文献   

17.
Atmospheric carbon dioxide (CO2) has increased since the pre-industrial period and is predicted to continue to increase throughout the twenty-first century. The ocean is a sink for atmospheric CO2 and increased CO2 concentration will change the carbonate equilibrium of seawater and result in lower carbonate ion concentration and lower pH. This may affect the entire marine biota but in particular calcifying organisms. In this study we investigated the effect of increased CO2 on the virus host interaction of Emiliania huxleyi as a calcifying organism and of Phaeocystis poucheti as a non- calcifying organism. Both algae were grown in laboratory controlled conditions under past (280 ppmv), present (350 ppmv) and future (700 ppmv) CO2 concentrations with and without added virus. Increased CO2 had a negative effect on the growth rate of P. pouchetii, but not of E. huxleyi. No impact was found on viral lysis of P. pouchetii while increased burst size and slightly delayed lysis was observed for E. huxleyi with increased CO2. We conclude that this short time study could not confirm earlier reports and our hypothesis of a negative effect of high CO2 on E. huxleyi growth and E. huxleyi virus production.  相似文献   

18.
Metagenomics has opened new windows on investigating viral diversity and functions. Viromic studies typically require large sample volumes and filtration through 0.2 μm pore-size filters, consequently excluding or under-sampling tailed and very large viruses. We have optimized a targeted viromic approach that employs fluorescence-activated sorting and whole genome amplification to produce dsDNA-enriched libraries from discrete viral populations from a 1-ml water sample. Using this approach on an environmental sample from the Patagonian Shelf, we produced three distinct libraries. One of the virus libraries was dominated (79.65% of sequences with known viral homology) by giant viruses from the Mimiviridae and Phycodnaviridae families, while the two other viromes were dominated by smaller phycodnaviruses, cyanophages and other bacteriophages. The estimated genotypic richness and diversity in our sorted viromes, with 52–163 estimated genotypes, was much lower than in previous virome reports. Fragment recruitment of metagenome reads to selected reference viral genomes yields high genome coverage, suggesting little amplification and sequencing bias against some genomic regions. These results underscore the value of our approach as an effective way to target and investigate specific virus groups. In particular, it will help reveal the diversity and abundance of giant viruses in marine ecosystems.  相似文献   

19.
The Arctic Ocean and its surrounding shelf seas are warming much faster than the global average, which potentially opens up new distribution areas for temperate‐origin marine phytoplankton. Using over three decades of continuous satellite observations, we show that increased inflow and temperature of Atlantic waters in the Barents Sea resulted in a striking poleward shift in the distribution of blooms of Emiliania huxleyi, a marine calcifying phytoplankton species. This species' blooms are typically associated with temperate waters and have expanded north to 76°N, five degrees further north of its first bloom occurrence in 1989. E. huxleyi's blooms keep pace with the changing climate of the Barents Sea, namely ocean warming and shifts in the position of the Polar Front, resulting in an exceptionally rapid range shift compared to what is generally detected in the marine realm. We propose that as the Eurasian Basin of the Arctic Ocean further atlantifies and ocean temperatures continue to rise, E. huxleyi and other temperate‐origin phytoplankton could well become resident bloom formers in the Arctic Ocean.  相似文献   

20.
Extracellular vesicles are produced by organisms from all kingdoms and serve a myriad of functions, many of which involve cell-cell signaling, especially during stress conditions and host-pathogen interactions. In the marine environment, communication between microorganisms can shape trophic level interactions and population succession, yet we know very little about the involvement of vesicles in these processes. In a previous study, we showed that vesicles produced during viral infection by the ecologically important model alga Emiliania huxleyi, could act as a pro-viral signal, by expediting infection and enhancing the half-life of the virus in the extracellular milieu. Here, we expand our laboratory findings and show the effect of vesicles on natural populations of E. huxleyi in a mesocosm setting. We profile the small-RNA (sRNA) cargo of vesicles that were produced by E. huxleyi during bloom succession, and show that vesicles applied to natural assemblages expedite viral infection and prolong the half-life of this major mortality agent of E. huxleyi. We subsequently reveal that exposure of the natural assemblage to E. huxleyi-derived vesicles modulates not only host-virus dynamics, but also other components of the microbial food webs, thus emphasizing the importance of extracellular vesicles to microbial interactions in the marine environment.Subject terms: Virus-host interactions, Microbial ecology, Water microbiology  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号