首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study the mechanical behaviour of the implant-bone interface the push- or pull-out test was overtaken from material science. Most authors equate the maximum load (break point) with the failure of the implant integration. Extending the test procedure by acoustic emission analysis reveals the possibility to detect the failure of the interface more in detail and from its earliest beginning. The development of disconnection between host and implant was found to start long before the ultimate load is reached and can be monitored and quantified during this period. The active interface mechanisms are characterized by the distribution function of acoustic emissions and the number of hits per time defines the kinetics of the failure. From clinical studies a gradual subsidence of loaded implants is known starting long time before the definite implant failure. The presented extension of the push-out test with acoustic emission analysis allows the detection of a critical shear stress tc which demarks the onset of the gradual interface failure. We believe this value to represent the real critical load which should not be exceeded in the clinical application of intraosseous implants.  相似文献   

2.
Currently available implants for direct attachment of prosthesis to the skeletal system after transfemoral amputation (OPRA system, Integrum AB, Sweden and ISP Endo/Exo prosthesis, ESKA Implants AG, Germany) show many advantages over the conventional socket fixation. However, restraining biomechanical issues such as considerable bone loss around the stem and peri-prosthetic bone fractures are present. To overcome these limiting issues a new concept of the direct intramedullary fixation was developed. We hypothesize that the new design will reduce the peri-prosthetic bone failure risk and adverse bone remodeling by restoring the natural load transfer in the femur. Generic CT-based finite element models of an intact femur and amputated bones implanted with 3 analyzed implants were created and loaded with a normal walking and a forward fall load. The strain adaptive bone remodeling theory was used to predict long-term bone changes around the implants and the periprosthetic bone failure risk was evaluated by the von Mises stress criterion. The results show that the new design provides close to physiological distribution of stresses in the bone and lower bone failure risk for the normal walking as compared to the OPRA and the ISP implants. The bone remodeling simulations did not reveal any overall bone loss around the new design, as opposed to the OPRA and the ISP implants, which induce considerable bone loss in the distal end of the femur. This positive outcome shows that the presented concept has a potential to considerably improve safety of the rehabilitation with the direct fixation implants.  相似文献   

3.
Fixation failure of glenoid components is the main cause of unsuccessful total shoulder arthroplasties. The characteristics of these failures are still not well understood, hence, attempts at improving the implant fixation are somewhat blind and the failure rate remains high. This lack of understanding is largely due to the fundamental problem that direct observations of failure are impossible as the fixation is inherently embedded within the bone.Twenty custom made implants, reflecting various common fixation designs, and a specimen set-up was prepared to enable direct observation of failure when the specimens were exposed to cyclic superior loads during laboratory experiments. Finite element analyses of the laboratory tests were also carried out to explain the observed failure scenarios.All implants, irrespective of the particular fixation design, failed at the implant–cement interface and failure initiated at the inferior part of the component fixation. Finite element analyses indicated that this failure scenario was caused by a weak and brittle implant–cement interface and tensile stresses in the inferior region possibly worsened by a stress raiser effect at the inferior rim.The results of this study indicate that glenoid failure can be delayed or prevented by improving the implant/cement interface strength. Also any design features that reduce the geometrical stress raiser and the inferior tensile stresses in general should delay implant loosening.  相似文献   

4.
骨质疏松症是一种以骨量减少,骨强度下降而脆性增加,骨折风险增加为特征的骨骼疾病。随着人口老龄化日趋严重,骨质疏松症已成为我国面临的重要公共健康问题。这些患者往往并存多种疾病,其中椎体骨折最为突出,危害较大。由于此类患者的虚弱的体质和较低的骨密度,实施手术治疗十分困难。新型的手术方式的开发和内固定植入物的设计明显降低了内固定失败率,提升了内固定稳定性。这些技术综合考虑了生物材料学、生物学和生物力学等多方面,在临床应用上获得了较好的疗效。本综述旨在总结脊柱内固定失败的机制和现存的新型手术技术与内固定植入物设计,并对未来脊柱内固定手术的发展方向加以展望。  相似文献   

5.
G. J. Lloyd  T. A. Wright 《CMAJ》1977,116(6):626-628
Internal fixation of fractures has become increasingly important since the introduction of self-compressing implants. Rigidity of fixation thus ensured permits primary bone healing. Two types of self-compressing implants are available--screws and plates. The former produces compression between fracture fragments, the latter, along the long axis of the bone. Two common types of plates are the dynamic compression plate and the Osteo self-compressing plate. Use of self-compressing implants requires familiarity with the technique, a definite plan of operation, and strict asepsis and lack of infection in the patient. Indications for the technique include failure or unsuitability of closed reduction of fractures, care of associated serious soft-tissue injuries, and displaced intra-articular fractures. Use of self-compressing plates hastens rehabilitation, lessens joint stiffness and reduces the duration of hospitalization. The incidence of nonunion with self-compression techniques is lower than with traditional methods of fracture management.  相似文献   

6.
Segmental bone defect animal models are often used for evaluating the bone regeneration performance of bone substituting biomaterials. Since bone regeneration is dependent on mechanical loading, it is important to determine mechanical load transfer after stabilization of the defect and to study the effects of biomaterial stiffness on the transmitted load. In this study, we assess the mechanical load transmitted over a 6 mm femur defect that is stabilized with an internal PEEK fixation plate. Subsequently, three types of selective laser melted porous titanium implants with different stiffness values were used to graft the defect (five specimens per group). In one additional group, the defect was left empty. Micro strain gauges were used to measure strain values at four different locations of the fixation plate during external loading on the femoral head. The load sharing between the fixation plate and titanium implant was highly variable with standard deviations of measured strain values between 31 and 93% of the mean values. As a consequence, no significant differences were measured between the forces transmitted through the titanium implants with different elastic moduli. Only some non-significant trends were observed in the mean strain values that, consistent with the results of a previous finite element study, implied the force transmitted through the implant increases with the implant stiffness. The applied internal fixation method does not standardize mechanical loading over the defect to enable detecting small differences in bone regeneration performances of bone substituting biomaterials. In conclusion, the fixation method requires further optimization to reduce the effects of the operative procedure and make the mechanical loading more consistent and improve the overall sensitivity of this rat femur defect model.  相似文献   

7.
Many commercial cemented glenoid components claim superior fixation designs and increased survivability. However, both research and clinical studies have shown conflicting results and it is unclear whether these design variations do improve loosening rates. Part of the difficulty in investigating fixation failure is the inability to directly observe the fixation interface, a problem addressed in this study by using a novel experimental set-up.Cyclic loading-displacement tests were carried out on 60 custom-made glenoid prostheses implanted into a bone substitute. Design parameters investigated included treatment of the fixation surface of the component resulting in different levels of back-surface roughness, flat-back versus curved-back, keel versus peg and more versus less conforming implants. Visually-observed failure and ASTM-recommended rim-displacements were recorded throughout testing to investigate fixation failure and if rim displacement is an appropriate measure of loosening.Roughening the implant back (Ra > 3 µm) improved resistance to failure (P < 0.005) by an order of magnitude with the rough and smooth groups failing at 8712 ± 5584 cycles (mean ± SD) and 1080 ± 1197 cycles, respectively. All other design parameters had no statistically significant effect on the number of cycles to failure. All implants failed inferiorly and 95% (57/60) at the implant/cement interface. Rim-displacement correlated with visually observed failure.The most important effect was that of roughening the implant, which strengthened the polyethylene-cement interface. Rim-displacement can be used as an indicator of fixation failure, but the sensitivity was insufficient to capture subtle effects.Level of Evidence: Basic Science Study, Biomechanical Analysis.  相似文献   

8.
PurposeTo quantitatively assess CT image quality and fracture visibility using virtual monochromatic imaging and iterative metal artifact reduction (iMAR) in a femoral bone fracture phantom with different fixation implants.MethodsA custom made phantom was scanned at 120-kVp and 140-kVp single-energy and 100/150-kVp dual-energy. Three stainless steel and two titanium implants with different thicknesses were placed on the phantom containing simulated one and two mm fractures. Single-energy CT images were reconstructed with and without iMAR, while DECT images were reconstructed at monochromatic energies between 70 and 190 keV. Non-metal scans were used as a reference. A Fourier power spectrum method and fracture model were used to analyze several anatomical areas.ResultsCT-value deviations of titanium implants were much lower compared to stainless steel implants. These deviations decreased for both DECT and iMAR. Fracture visibility, measured with the fracture model, improved the most when DECT was used while artifact reduction benefitted more from iMAR. The optimal monochromatic energy for metal artifact reduction, based on CT-value deviation, varied for each metal between 130 and 150 keV. The fracture model provided a signal-to-noise ratio for the near metal fracture visibility, providing the optimal keV.ConclusioniMAR and high keV monochromatic images extracted from DECT both reduce metal artifacts caused by different metal fixation implants. Quantitative femoral phantom results show that DECT is superior to iMAR regarding fracture visualization adjacent to metal fixation implants. The introduction of new artifacts when using iMAR impedes its value in near metal fixation implant imaging.  相似文献   

9.
Thirteen patients with large ameloblastomas of the mandible underwent segmental mandibulectomy and immediate reconstruction, with simultaneous placement of osseointegrated implants. All patients received palatal mucosal grafts around the dental implants 6 to 10 months after surgical treatment and received implant-supported prostheses another 1 to 2 months later. There were five female and eight male patients, with a mean age of 32 years (range, 17 to 50 years). The mean length of the mandibular defect was 8.8 cm (range, 5 to 13 cm). All free fibula flap procedures were successful, with no reexplorations or partial flap losses. There was no clinical or radiographic evidence of failure during the osseointegration process for any implant. With functional occlusal loading, the marginal bone loss around the implants was less than 1.5 mm in a mean follow-up period of 40 months (range, 18 to 70 months). There were no recurrences during that time. The technique described allows improved access to the bone at the time of reconstruction, immediate assessment of alveolar ridge relationships, and accurate fixation of the implant-fibula construct. The advantages of this procedure include a reduced risk of recurrence with segmental resection, reliable mandibular reconstruction, and reduction of the number of surgical procedures, allowing full oral rehabilitation in a shorter time. It is concluded that segmental mandibulectomy and immediate vascularized fibula osteoseptocutaneous flap reconstruction, with simultaneous placement of osseointegrated implants, represent an ideal treatment method for large ameloblastomas of the mandible.  相似文献   

10.
The long-term clinical success of cemented hip stems is influenced both by the implant design, and by the surgical procedure. A methodology is proposed for discriminating between implant designs with different clinical outcomes. The protocol was designed with industrial pre-clinical validation in mind.Two cemented stem types were tested, one (Lubinus SPII) having good and the other (Müller Curved) having poor clinical outcomes. Three implants for each type were subjected to a mechanical in vitro test of one million loading cycles. Each cycle reproduced the load components of stair climbing. Interface shear micromotion was measured during the test in the direction of rotation and along the stem axis. The stem roughness before and after the test was compared. After the test, the cement mantles were retrieved and inspected through dye penetrants to detect evidences of micro-damage. For each specimen, the events of the loosening process were examined, based on the in vitro data available, so as to analyze the whole failure mechanism.The protocol developed was sensitive to the implant design, with significantly different results being found for the two stem types, both in terms of stem-cement micromotions, surface roughness alteration, and cement mantle damage. The information yielded by the three different investigation techniques was consistent for each of the two groups of specimens tested, allowing a better understanding of the failure process. In vitro inducible micromotion and permanent migration measurements, together with cement-stem interface fretting damage and cement fatigue damage, can help predicting the clinical performance of cemented stems.  相似文献   

11.
In clinical applications, colonization of metal implants by adhesive and biofilm-forming bacteria not only prolong healing but create additional healthcare costs for implant revision and antimicrobial treatment. An in vitro assay was established investigating the antimicrobial surface activity of external fixation pins intended for use in bone fractures and deformities. Test articles made out of stainless steel and coated with a polymer-containing nanoparticulate silver were compared to non-coated reference controls out of stainless steel, copper and titanium. Staphylococcus epidermidis, known as a predominant cause for implant-related infections was used as test organism. Test pins and bacteria were incubated for a period of 20 h found to be sufficient for initiating biofilm formation. After removing non- and low-adherent bacteria by rinsing, two methods were used to isolate high-adherent (sessile) bacteria from the implant surfaces. Besides shaking the implants in a solution containing small glass beads, a cytobrush technique was used to mechanically harvest viable bacteria. Finally, the amount of detached bacteria was determined by plate counts. Several parameters identified to be critical within the different removal procedures such as the inoculum concentration and the shaking time in the presence of glass beads as well as time of the cytobrush treatment were analysed. The final test scheme resulted in the use of an inoculum of 105 colony forming units (CFU) per millilitre, ten rinsing steps for the removal of low adherent bacteria and 5 min of shaking in the presence of glass beads, detaching the high-adherent bacteria. Due to subjective variations impacting the outcome of the procedure, the cytobrush technique was not favoured and finally rejected. Using the in vitro assay developed, it could be demonstrated that fixation pins coated with silver show a 3 log step reduction in the number of biofilm-forming bacteria compared to a non-coated stainless steel or titanium implant. Pins made out of copper showed the highest antimicrobial efficacy, as the number of detached bacteria was found to be below the detection limit, they served as a positive control within this test.  相似文献   

12.
BACKGROUND: Interbody arthrodesis is employed in the lumbar spine to eliminate painful motion and achieve stability through bony fusion. Bone grafts, metal cages, composite spacers, and growth factors are available and can be placed through traditional open techniques or minimally invasively. Whether placed anteriorly, posteriorly, or laterally, insertion of these implants necessitates compromise of the anulus--an inherently destabilizing procedure. A new axial percutaneous approach to the lumbosacral spine has been described. Using this technique, vertical access to the lumbosacral spine is achieved percutaneously via the presacral space. An implant that can be placed across a motion segment without compromise to the anulus avoids surgical destabilization and may be advantageous for interbody arthrodesis. The purpose of this study was to evaluate the in vitro biomechanical performance of the axial fixation rod, an anulus sparing, centrally placed interbody fusion implant for motion segment stabilization. METHOD OF APPROACH: Twenty-four bovine lumbar motion segments were mechanically tested using an unconstrainedflexibility protocol in sagittal and lateral bending, and torsion. Motion segments were also tested in axial compression. Each specimen was tested in an intact state, then drilled (simulating a transaxial approach to the lumbosacral spine), then with one of two axial fixation rods placed in the spine for stabilization. The range of motion, bending stiffness, and axial compressive stiffness were determined for each test condition. Results were compared to those previously reported for femoral ring allografts, bone dowels, BAK and BAK Proximity cages, Ray TFC, Brantigan ALIF and TLIF implants, the InFix Device, Danek TIBFD, single and double Harms cages, and Kaneda, Isola, and University plating systems. RESULTS: While axial drilling of specimens had little effect on stiffness and range of motion, specimens implanted with the axial fixation rod exhibited significant increases in stiffness and decreases in range of motion relative to intact state. When compared to existing anterior, posterior, and interbody instrumentation, lateral and sagittal bending stiffness of the axial fixation rod exceeded that of all other interbody devices, while stiffness in extension and axial compression were comparable to plate and rod constructs. Torsional stiffness was comparable to other interbody constructs and slightly lower than plate and rod constructs. CONCLUSIONS: For stabilization of the L5-S1 motion segment, axial placement of implants offers potential benefits relative to traditional exposures. The preliminary biomechanical data from this study indicate that the axial fixation rod compares favorably to other devices and may be suitable to reduce pathologic motion at L5-S1, thus promoting bony fusion.  相似文献   

13.

Purpose

Fixation of proximal femoral megaprostheses is achieved in the diaphyseal isthmus. We hypothesized that after extended bone resection including the proximal part of the isthmus a reduced length of fixation will affect the stability and fixation characteristics of these megaprostheses. The aim of this study was to analyze in a validated sawbone model with extended proximal femoral defects which types of implants have sufficient primary stability to allow osteointegration and to describe their fixation characteristics.

Methods

Four different cementless megaprostheses were implanted into 16 Sawbones with an AAOS type III defect after resection 11cm below the lesser trochanter involving the proximal isthmus. To determine the primary implant stability relative micromotions between bone and implant were measured in relation to a cyclic torque of 7Nm applied on the longitudinal axis of the implant. We determined the fixation characteristics of the different implant designs by comparing these relative micromotions along the longitudinal stem axis.

Results

In the tested sawbones all studied implants showed sufficient primary stability to admit bone integration with relative micromotions below 150µm after adapting our results to physiologic hip joint loadings. Different fixation characteristics of the megaprostheses were determined, which could be explained by their differing design and fixation concepts.

Conclusions

Cementless megaprostheses of different designs seem to provide sufficient primary stability to bridge proximal femoral defects if the diaphyseal isthmus is partially preserved. In our sawbone model the different implant fixation patterns can be related to their stem designs. No evidence can be provided to favor one of the studied implants in this setting. However, femoral morphology is variable and in different isthmus configurations specific implant designs might be appropriate to achieve the most favorable primary stability, which enables bone integration and consequently long term implant stability.  相似文献   

14.
Pullout of implants at the proximal and distal ends of multilevel constructs represents a common spinal surgery problem. One goal concerning the development of new spinal implants is to achieve stable fixation together with the least invasive approach to the spinal column. This biomechanical study measures the influence of different modes of implantation and different screw designs, including a new monocortical system, on the maximum pullout strength of screws inserted ventrolaterally into calf vertebrae. The force pullout of eight different groups were tested and compared. Included were three bicortical used single screws (USS, Zielke-VDS, single KASS). To further increase pullout strength either a second screw (KASS) or a pullout-resistant nut can be added (USS with pullout nut). A completely new concept of anchorage represents the Hollow Modular Anchorage System (MACS-HMA). This hollow titanium implant has an increased outside diameter and is designed for monocortical use. Additionally two screw systems suitable for bicortical use were tested in monocortical mode of anchorage (USS, single KASS). We selected seven vertebrae equal in mean size and bone mineral density for each of the eight groups. The vertebral body and implant were connected to both ends of a servohydraulic testing machine. Displacement controlled distraction was applied until failure at the metal-bone-interface occurred. The maximum axial pullout force was recorded. Mean BMD was 312 +/- 55 mg CaHA/ml in cancellous bone and 498 +/- 98 mg CaHA/ml in cortical bone. The highest resistance to pullout found, measured 4.2 kN (KASS) and 4.0 kN (USS with pullout nut). The mean pullout strength of Zielke-VDS was 2.1 kN, of single KASS 2.5 kN, of MACS-HMA 2.6 kN and of USS 3.2 kN. There was no statistically significant difference (t-test, p > 0.05) between bicortical screws and the new monocortical implant. For the strongest fixation at the proximal or distal end of long spinal constructs the addition of a second screw or a pullout-resistant nut behind the opposite cortex offers even stronger fixation.  相似文献   

15.
Spinal interbody fusion has proved to be a useful procedure for the surgical stabilization of spinal segments, for which fusion cases made of metal or reinforced polymers are increasingly being used. For the mechanical testing of spinal interbody implants, a test setup has been developed on the basis of an ASTM proposal. Initially, testing of lumbar fusion cages made of CFRP (carbon fibre reinforced polymer) was carried out. The implants (UNION Cages, Medtronic Sofamor Danek), which are characterised by their radiolucency on radiography, NMR and CT scans, have a cube-shaped body with three table-tracks on the under and upper surfaces. The cages were tested at different loads. Modifications of the proposed standardized method were carried out to enable implementation of implant-oriented testing. The tested cages were shown to have adequate axial compression, shear and torsional strengths with regard to the implant body. The maximum axial compression force tolerated by the table-tracks was less than the maximal potential loading of the lumbar spine, and, with account being taken of implant design, consequences with regard to surgical technique were drawn. As dictated by the geometry of the table-tracks, parallel grooves have to be made intra-operatively in the vertebral end plates. Axial compressive loads then act on the implant body, and the table-tracks are protected from damage. To avoid in vivo failure, the tested cages should be implanted only when this specific surgical technique is employed. Using supplementary anterior or posterior instrumentation, in vivo failure of the table-tracks under physiological spinal loading is not to be expected.  相似文献   

16.
The need to provide rigid bony fixation in the surgical treatment of craniofacial deformities has inspired an on-going evolution of surgical innovations and implants. Because of the young age of many treated craniosynostosis patients and the unique pattern of cranial vault growth, the extensive implantation of metal devices is potentially problematic. The use of resorbable plate and screw devices offers all of the benefits of rigid fixation without many of their potential risks. Since the introduction of resorbable plate and screw devices in 1996, tens of thousands of craniofacial patients have received implants, but long-term results from a large series have yet to be reported. A combined prospective and retrospective analysis was done on 1883 craniosynostosis patients under 2 years of age treated by 12 surgeons from seven different geographic locations over a 5-year period who used the same type of resorbable bone fixation devices (poly-L-lacticpolyglycolic copolymer). Specifically, the incidence of postoperative infection, fixation device failure, occurrence of delayed foreign-body reactions, and the need for reoperation resulting from device-related problems were determined. Technical difficulties and trends in device use were also noted. From this series, significant infectious complications occurred in 0.2 percent, device instability primarily resulting from postoperative trauma occurred in 0.3 percent, and self-limiting local foreign-body reactions occurred in 0.7 percent of the treated patients. The overall reoperation rate attributable to identifiable device-related problems was 0.3 percent. Improved bony stability was gained by using the longest plate geometries/configurations possible and bone grafting any significant gaps across plated areas that were structurally important. The specific types of plates and screws used evolved over the study period from simple plates, meshes, and threaded screws to application-specific plates and threadless push screws whose use varied among the involved surgeons. This report documents the safety and long-term value of the use of resorbable (LactoSorb) plate and screw fixation in pediatric craniofacial surgery in the infant and young child. Device-related complications requiring reoperation occurred in less than 0.5 percent of the implanted patients, which is less frequent than is reported for metallic bone fixation. Resorbable bone fixation for the rapidly growing cranial vault has fewer potential complications than the traditional use of metal plates, screws, and wires.  相似文献   

17.
This study analyzed the shells of single-lumen silicone gel breast implants within the general context of device durability in vivo. The investigation included the major types of gel-filled implants that were manufactured in the United States in a 30-year period. The implants analyzed were Cronin seamed (two explants and one control), Silastic 0 and Silastic I (18 explants and seven controls), and Silastic II (22 explants and 43 controls). The biodurability of the explants was investigated with measurements of the mechanical and chemical properties of the various types of silicone gel control and explanted shells, with implantation times ranging from 3 months to 32 years. The shell properties measured for the controls and explants included the stress-strain relationships, tensile strength, elongation, tear resistance, moduli, cross-link density, and amount of extractable material in the shell. In addition, the mechanical properties of shells that had been extracted with hexane were analyzed for both explants and control implants. The silicone gel explants investigated in this study included some of the oldest explants of the various major types that have been tested to date. For assessment of long-term implantation effects, the data obtained in this study were combined with all known data from other institutions on the various major types of gel implants. The study also addressed the failure mechanisms associated with silicone gel breast implants. The results of the study demonstrated that silicone gel implants have remained intact for 32 years in vivo and that degradation of the shell mechanical and chemical properties is not a primary mechanism for silicone gel breast implant failure.  相似文献   

18.
The nucleoids of Escherichia coli, independently of the physiological state of the bacteria, are shown to be preserved as a fine-stranded fibrillar nucleoplasm by an OsO(4) fixation under defined conditions: acetate-veronal buffer pH 6, presence of Ca(++) and amino acids, stabilization with uranyl-acetate before dehydration. The same fixation procedure applied to the DNA of vegetative phage reveals a pool of homogeneous fibrillar structure very similar to the nucleoplasm. The "versene test," which produces a coarse coagulation of these plasms, emphasizes the similar behaviour of the pool and the nucleoids. The heads of mature phage are preserved in their true polyhedral shape by the standard fixation procedure, although they may be badly distorted when fixed under different conditions. Lanthanum nitrate and uranyl-acetate are shown to increase markedly the contrast of both phage and cytoplasm. The consequences of the fibrillar structure of the genetic material are discussed in relation to the probable division process.  相似文献   

19.
The loads acting in knee joints must be known for improving joint replacement, surgical procedures, physiotherapy, biomechanical computer simulations, and to advise patients with osteoarthritis or fractures about what activities to avoid. Such data would also allow verification of test standards for knee implants. This work analyzes data from 8 subjects with instrumented knee implants, which allowed measuring the contact forces and moments acting in the joint. The implants were powered inductively and the loads transmitted at radio frequency. The time courses of forces and moments during walking, stair climbing, and 6 more activities were averaged for subjects with I) average body weight and average load levels and II) high body weight and high load levels. During all investigated activities except jogging, the high force levels reached 3,372–4,218N. During slow jogging, they were up to 5,165N. The peak torque around the implant stem during walking was 10.5 Nm, which was higher than during all other activities including jogging. The transverse forces and the moments varied greatly between the subjects, especially during non-cyclic activities. The high load levels measured were mostly above those defined in the wear test ISO 14243. The loads defined in the ISO test standard should be adapted to the levels reported here. The new data will allow realistic investigations and improvements of joint replacement, surgical procedures for tendon repair, treatment of fractures, and others. Computer models of the load conditions in the lower extremities will become more realistic if the new data is used as a gold standard. However, due to the extreme individual variations of some load components, even the reported average load profiles can most likely not explain every failure of an implant or a surgical procedure.  相似文献   

20.
Axelson  P.  Mäkelä  A.  Vainionpää  S.  Mero  M.  Rokkanen  P. 《Acta veterinaria Scandinavica》1988,29(3-4):477-484
In a preclinical and a clinical study physeal fractures of cats and dogs were fixated with biodegradable implants. The preclinical part consisted of 4 cats with experimental physeal fractures of the distal femurs and the clinical part of 6 cats and 8 dogs with different physeal fractures. All fractures were fixated with selfreinforced polyglycolic acid (PGA) implants of different sizes. No external support was applied after the fixation. All cats and dogs used their operated legs during the first postoperative week and they could walk without lameness in 6 weeks. The fracture healed without delay or malformations. The retardations of the growth of the physeal regions were considered minimal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号