首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Cho S  Blackford JA  Simons SS 《Biochemistry》2005,44(9):3547-3561
The determinants of the partial agonist activity of most antisteroids complexed with steroid receptors are not well understood. We now examine the role of the N-terminal half of the glucocorticoid receptor (GR) including the activation domain (AF-1), the DNA binding site sequence, receptor contact with DNA, and coactivator binding on the expression of partial agonist activity in two cell lines for GRs bound by five antiglucocorticoids: dexamethasone mesylate (Dex-Mes), dexamethasone oxetanone (Dex-Ox), progesterone (Prog), deoxycorticosterone (DOC), and RU486. Using truncated GRs, we find that the N-terminal half of GR and the AF-1 domain are dispensable for the partial agonist activity of antiglucocorticoids. This contrasts with the AF-1 domain being required for the partial agonist activity of antisteroids with most steroid receptors. DNA sequence (MMTV vs a simple GRE enhancer) and cell-specific factors (CV-1 vs Cos-7) exert minor effects on the level of partial agonist activity. Small activity differences for some complexes of GAL4/GR chimeras with GR- vs GAL-responsive reporters suggest a contribution of DNA-induced conformational changes. A role for steroid-regulated coactivator binding to GRs is compatible with the progressively smaller increase in partial agonist activity of Dex-Mes > Prog > RU486 with added GRIP1 in CV-1 cells. This hypothesis is consistent with titration experiments, where low concentrations of GRIP1 more effectively increase the partial agonist activity of Dex-Mes than Prog complexes. Furthermore, ligand-dependent GRIP1 binding to DNA-bound GR complexes decreases in the order of Dex > Dex-Mes > Prog > RU486. Thus, the partial agonist activity of a given GR-steroid complex in CV-1 cells correlates with its cell-free binding of GRIP1. The ability to modify the levels of partial agonist activity through changes in steroid structure, DNA sequence, specific DNA-induced conformational changes, and coactivator binding suggests that useful variations in endocrine therapies may be possible by the judicious selection of these parameters to afford gene and tissue selective results.  相似文献   

8.
ABSTRACT: BACKGROUND: Duplicated glucocorticoid receptors (GR) are present in most teleost fish. The evolutionary advantage of retaining two GRs is unclear, as no subtype specific functional traits or physiological roles have been defined. To identify factors driving the retention of duplicate GRs in teleosts, the current study examined GRs in representatives of two basal ray-finned fish taxa that emerged either side of the teleost lineage whole genome duplication event (WGD) event, the acipenseriform, Acipenser ruthenus, (pre-WGD) and the osteoglossimorph, Pantodon buchholzi, (post-WGD). RESULTS: The study identified a single GR in A. ruthenus (ArGR) and two GRs in P. buchholzi (PbGR1 and PbGR2). Phylogenetic analyses showed that ArGR formed a distinct branch separate from the teleosts GRs. The teleost GR lineage was subdivded into two sublineages, each of which contained one of the two P. buchholzi GRs. ArGR, PbGR1 and PbGR2 all possess the unique 9 amino acid insert between the zinc-fingers of the DNA-binding domain that is present in one of the teleost GR lineages (GR1), but not the other (GR2). A splice variant of PbGR2 produces an isoform that lacked these 9 amino acids (PbGR2b). Cortisol stimulated transactivation activity of ArGR, PbGR2b and PbGR1 in vitro; with PbGR2b and PbGR1, the glucocorticoid 11-deoxycortisol was a more potent agonist than cortisol. The hormone sensitivity of PbGR2b and PbGR1 differed in the transactivation assay, with PbGR2b having lower EC50 values and greater fold induction. CONCLUSIONS: The difference in transactivation activity sensitivity between duplicated GRs of P. buchholzi suggests potential functional differences between the paralogs emerged early in the teleost lineage. Given the pleiotropic nature of GR function in vertebrates, this finding is in accordance with the hypothesis that duplicated GRs were potentially retained through subfunctionalisation followed by gene sharing. A 9 amino acid insert in the DNA-binding domain emerged in basal ray-finned fish GRs. However, the presence of a PbGR2 splice variant that lacks this insert, as well as the loss of the exon encoding these amino acids in the genes encoding for other teleost GR2 suggests the selection of two receptors with different DNA-binding domain structures in teleosts.  相似文献   

9.
In v-mos transformed cells, glucocorticoid receptor (GR) proteins that bind hormone agonist are not efficiently retained within nuclei and redistribute to the cytoplasmic compartment. These cytoplasmic desensitized receptors cannot be reutilized and may represent trapped intermediates derived from GR recycling. We have used the glucocorticoid antagonist RU486 to examine whether v-mos effects can be exerted on any ligand-bound GR. In the rat 6m2 cell line that expresses a temperature-sensitive p85gag-mos oncoprotein, RU486 is a complete antagonist and suppresses dexamethasone induction of metallothionein-1 mRNA at equimolar concentrations. Using indirect immunofluorescence, we observe efficient nuclear translocation of GR in response to RU486 treatment in either the presence or absence of v-mos oncoproteins. However, in contrast to the redistribution of agonist-bound nuclear receptors to the cytoplasm of v-mos-transformed cells, RU486-bound GRs are efficiently retained within nuclei. Interestingly, withdrawal of RU486 does not lead to efficient depletion of nuclear GR in either nontransformed or v-mos transformed cells. It is only after the addition of hormone agonist to RU486 withdrawn v-mos-transformed cells that GRs are depleted from nuclei and subsequently redistributed to the cytoplasm. Thus, only nuclear GRs that are agonist-bound and capable of modulating gene activity can be subsequently processed and recycled into the cytoplasm.  相似文献   

10.
The coactivator TIF2 was predicted to interact with an unknown factor to modify both the relative inhibition in glucocorticoid receptor (GR)-mediated gene repression and several parameters of agonists and antisteroids in GR-regulated induction. Here, we describe the isolation and characterization of the predicted factor as a new 1,277-amino-acid endogenous protein (STAMP). STAMP associates with coactivators (TIF2 and SRC-1) and is selective for a subset of the steroid/nuclear receptors including GRs. Transfected STAMP increases the effects of TIF2 in GR-mediated repression and induction. Conversely, the levels of both induction and repression of endogenous genes are reduced when STAMP small interfering RNAs are used to lower the level of endogenous STAMP. Endogenous STAMP colocalizes with GR in intact cells and is recruited to the promoters of endogenous GR-induced and -repressed genes. We suggest that STAMP is an important new, downstream component of GR action in both gene activation and gene repression.  相似文献   

11.
12.
13.
14.
15.
S C Hsu  M Qi    D B DeFranco 《The EMBO journal》1992,11(9):3457-3468
Glucocorticoid receptor (GR) nuclear translocation, transactivation and phosphorylation were examined during the cell cycle in mouse L cell fibroblasts. Glucocorticoid-dependent transactivation of the mouse mammary tumor virus promoter was observed in G0 and S phase synchronized L cells, but not in G2 synchronized cells. G2 effects were selective on the glucocorticoid hormone signal transduction pathway, since glucocorticoid but not heavy metal induction of the endogenous Metallothionein-1 gene was also impaired in G2 synchronized cells. GRs that translocate to the nucleus of G2 synchronized cells in response to dexamethasone treatment were not efficiently retained there and redistributed to the cytoplasmic compartment. In contrast, GRs bound by the glucocorticoid antagonist RU486 were efficiently retained within nuclei of G2 synchronized cells. Inefficient nuclear retention was observed for both dexamethasone- and RU486-bound GRs in L cells that actively progress through G2 following release from an S phase arrest. Finally, site-specific alterations in GR phosphorylation were observed in G2 synchronized cells suggesting that cell cycle regulation of specific protein kinases and phosphatases could influence nuclear retention, recycling and transactivation activity of the GR.  相似文献   

16.
Monoclonal antibodies to the rat hepatic glucocorticoid receptor (GR) were produced by using 4000-fold-purified unactivated rat hepatic GR as the immunogen in an immunization in vitro. Hybridomas were screened for anti-GR antibody production by using an enzyme-linked immunosorbent assay. The antibody, 3A6, described here, is an IgM (lambda). The interaction of 3A6 with the purified GR was explored by sedimentation analysis, where a shift of the 9 S GR to a form with a higher s20,w value was demonstrated. Binding specificity and sensitivity were demonstrated by protein immunoblotting. 3A6 cross-reacted with all rat tissue glucocorticoid receptors (GRs) examined, except those of the brain. Species cross-reactivity was observed with other mammalian GRs (from human CEM-C7 cells and from pig and mouse liver). Immunocytochemical localization of the GR was assessed by indirect immunofluorescence in intact fixed cells, which demonstrated intense cytoplasmic staining in the absence of pretreatment with glucocorticoids and nuclear localization when cells were pretreated with glucocorticoids. This monoclonal antibody significantly inhibited steroid binding to unoccupied receptor and DNA binding of activated steroid-receptor complexes. Furthermore, preincubation of the purified activated GR complex with 3A6 prevented phosphorylation of the GR in vitro. Thus 3A6 differs from previous monoclonal antibodies to the GR in its capacity to cross-react with the human GR and by its specificity for an epitope on or near a functional domain of the GR.  相似文献   

17.
18.
Selective enhancement of gene transfer by steroid-mediated gene delivery.   总被引:6,自引:0,他引:6  
The incorporation of transgenes into the host cells' nuclei is problematic using conventional nonviral gene delivery technologies. Here we describe a strategy called steroid-mediated gene delivery (SMGD), which uses steroid receptors as shuttles to facilitate the uptake of transfected DNA into the nucleus. We use glucocorticoid receptors (GRs) as a model system with which to test the principle of SMGD. To this end, we synthesized and tested several bifunctional steroid derivatives, finally focusing on a compound named DR9NP, consisting of a dexamethasone backbone linked to a psoralen moiety using a nine-atom chemical spacer. DR9NP binds to the GR in either its free or DNA-crosslinked form, inducing the translocation of the GR to the nucleus. The expression of transfected DR9NP-decorated reporter plasmids is enhanced in dividing cells: expression of steroid-decorated reporter plasmids depends on the presence of the GR, is independent of the transactivation potential of the GR, and correlates with enhanced nuclear accumulation of the transgene in GR-positive cells. The SMGD effect is also observed in cells naturally expressing GRs and is significantly increased in nondividing cell cultures. We propose that SMGD could be used as a platform for selective targeting of transgenes in nonviral somatic gene transfer.  相似文献   

19.
20.
Recent reports describe the ability of factors to modulate the position of the dose–response curve of receptor–agonist complexes, and the amount of partial agonist activity of receptor–antagonist complexes, of androgen, glucocorticoid (GRs), and progesterone receptors (PRs). We now ask whether this modulation extends to the two remaining steroid receptors: mineralocorticoid (MRs) and estrogen receptors (ERs). These studies of MR were facilitated by our discovery that the antiglucocorticoid dexamethasone 21-mesylate (Dex-Mes) is a new antimineralocorticoid with significant amounts of partial agonist activity. Elevated levels of MR, the co-activators TIF2 and SRC-1, and the co-repressor SMRT do modulate the dose–response curve and partial agonist activity of MR complexes. Interestingly, the precise responses are indistinguishable from those seen with GRs in the same cells. Thus, the unequal transactivation of common genes by MRs versus GRs probably cannot be explained by differential responses to changing cellular concentrations of homologous receptor, co-activators, or co-repressors. We also find that the dose–response curve of ER–estradiol complexes is left-shifted to lower steroid concentrations by higher amounts of exogenous ER. Therefore, the modulation of either the dose–response curve of agonists or the partial agonist activity of antisteroid, and in many cases the modulation of both properties, is a common phenomenon for all of the classical steroid receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号