首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prostaglandin synthetase contains both oxygenase and peroxidase activity and catalyzes the first step of prostaglandin synthesis. Aspirin (acetylsalicylic acid) inhibits oxygenase activity by acetylating a serine residue of the enzyme. In the current study, we have investigated the subunit structure of this complex enzyme and the stoichiometry of aspirin-mediated acetylation of the enzyme. The enzyme was purified to near homogeneity in both active and aspirin-acetylated forms. The purified protein was analyzed for enzymatic activity, [3H]acetate content following treatment with [acetyl-3H]aspirin, NH2-terminal sequence, and amino acid composition. The results show first, that the enzyme can be purified to near homogeneity in an active form; second, that the enzyme consists of a single polypeptide chain (molecular weight 72,000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis) with a unique NH2-terminal sequence (Ala-Asp-Pro-Gly-Ala-Pro-Ala-Pro-Val-Asn-Pro-Met-Gly-); and third, that aspirin inhibits the enzyme by transfer of one acetate per enzyme monomer. Therefore, the two distinct enzymatic activities, oxygenation and peroxidation, are present in a single polypeptide chain. Experiments with a cross-linking agent indicate that in nonionic detergent the enzyme is a dimer of two identical subunits.  相似文献   

2.
3.
Purified, apoprostaglandin synthetase was prepared from sheep vesicular gland and studied in terms of its heme-binding properties. The enzyme binds a single heme group per enzyme monomer, Mr = 70,000. When reconstituted with heme, the enzyme has an absorption maximum at 412 nm and an absorption coefficient, epsilon 412 nm, of 120 mM-1 cm-1. The binding of heme to the apoenzyme was accompanied by a proportional increase in enzyme activity up to the point of heme-binding saturation. This reconstituted holoenzyme forms prostaglandin H2 from arachidonate. We conclude that prostaglandin synthetase possesses the heme-binding properties of a "typical" heme protein and that a single heme group mediates both the oxygenase and the peroxidase activities of the enzyme.  相似文献   

4.
5.
The microsomal fraction of homogenates of the sheep vesicular glands, supplemented with 1 mM NADPH, metabolized 0.2 mM prostaglandin E2 to 20-hydroxyprostaglandin E2 at a rate of 76 +/- 9 pmol/min per mg of protein (with a Km of about 0.1 mM and a Vmax of about 0.1 nmol/min per mg of protein). Prostaglandin E1 was metabolized at a rate of only 8.5% of that of prostaglandin E2. The metabolism of prostaglandin E2 was decreased by 66% using 1 mM NADH instead of NADPH. alpha-Naphthoflavone (50 microM) and carbon monoxide inhibited the 20-hydroxylase by more than 60%, while 1 mM beta-diethylaminoethyl-2,2-diphenyl-pentanoate and 1 mM metyrapone inhibited it by less than 50%. The enzyme catalyzed the incorporation of atmospheric oxygen into the substrate. The findings suggest that the 20-hydroxylase could be a cytochrome P-450. The 20-hydroxylase could not be detected in vesicular glands of five rams 3 weeks after castration. The function of the enzyme is presumably to create the high level of 20-hydroxyprostaglandin E compounds in ram semen.  相似文献   

6.
The effect of methional on prostaglandin biosynthesis from 5,8,11, 14-eicosatetraenoic acid was studied with microsomes from both bovine vesicular glands (BVG) and sheep vesicular glands (SVG). Ethylene was identified when methional was added to the fatty acid-microsome incubation systems showing that oxygen centered radicals such as hydroxyl radical were generated during incubation. A low methional level, 1 mM, enhanced the rate of prostaglandin biosynthesis in both BVG and SVG. A high methional level, 10 mM, inhibited prostaglandin biosynthesis in both BVG alone and SVG solubilized with 1% Tween 20. The inhibitory effect of 10 mM methional was reversed by lyophilization. These data suggest that oxygen centered radicals are used in prostaglandin biosynthesis even though they inactivate the enzyme complex.  相似文献   

7.
Serum haptoglobin was added to the reaction mixture of prostaglandin synthase (EC 1.14.99.1) and its inhibitory effect was studied [1-14C]Arachidonic acid was used as substrate and the enzyme activity was estimated by monitoring the radioactivity of the products after thin layer chromatography. With or without addition of hemoglobin to the reaction mixture, both the purified haptoglobin 1-1 and 2-2 showed inhibitory activity. In the presence of 5 microM hematin, however, inhibitory activity haptoglobin was not observed. Inhibition of prostaglandin synthesis in the system depended on the molar ratio of haptoglobin to hemoglobin in the reaction mixture. These results demonstrate that haptoglobin inhibits prostaglandin synthase by restricting available heme group for the enzyme activity through complexing with hemoglobin. However, haptoglobin did not inhibit completely the stimulatory effect of free hemoglobin. Relevant significant of this effect was discussed.  相似文献   

8.
The highly purified prostaglandin endoperoxide synthetase from bovine vesicular gland microsomes had two still unresolved enzyme activities; the oxygenative cyclization of 8,11,14-eicosatrienoic acid to produce prostaglandin G1 and the conversion of the 15-hydro-peroxide of prostaglandin G1 to a 15-hydroxyl group, producing prostaglandin H1. The latter enzymatic reaction required heme and was stimulated by a variety of compounds, including tryptophan, epinephrine, and guaiacol, but not by glutathione. A peroxidatic dehydrogenation was demonstrated with epinephrine or guaiacol in the presence of various hydroperoxides, including hydrogen peroxide and prostaglandin G1. Higher activity and affinity were observed with the 15-hydroperoxide of eicosapolyenoic acid, especially those with the prostaglandin structure. Both the dehydrogenation of epinephrine or guaiacol and the 15-hydroperoxide reduction of prostaglandin G1 were demonstrated in nearly stoichiometric quantities. With tryptophan, however, such a stoichiometric transformation was not observed. The peroxidase activity as followed with guaiacol and hydrogen peroxide and the tryptophan-stimulated conversion of prostaglandin G1 to H1 were not dissociable as examined by isoelectric focusing, heat treatment, pH profile, and heme specificity. The results suggest that the peroxidase with a broad substrate specificity is an integral part of prostaglandin endoperoxide synthetase which is responsible for the conversion of prostaglandin G1 to H1.  相似文献   

9.
The effect of methional on prostaglandin biosynthesis from 5,8,11,14-eicosatetraenoic acid was studied with microsomes from both bovine vesicular glands (BVG) and sheep vesicular glands (SVG). Ethylene was identified when methional was added to the fatty acid-microsome incubation systems showing that oxygen centered radicals such as hydroxyl radical were generated during incubation. A low methional level, 1 mM, enhanced the rate of prostaglandin biosynthesis in both BVG and SVG. A high methional level, 10 mM, inhibited prostaglandin biosynthesis in both BVG alone and SVG solubilized with 1% Tween 20. The inhibitory effect of 10 mM methional was reversed by lyophilization. These data suggest that oxygen centered radicals are used in prostaglandin biosynthesis even though they inactivate the enzyme complex.  相似文献   

10.
The luminol chemiluminescence associated with the reaction between vesicular gland microsomes and arachidonic acid was found to be inhibited by superoxide dismutase, catalase and hydroxyl radical scavengers. It was also found that diethylenetriamine pentaacetic acid caused only slight inhibition. This is interpreted as showing the formation of hydroxyl radicals in a Haber-Weiss reaction and the interaction of luminol with the hydroxyl radicals. The Haber-Weiss catalyst is taken to be heme iron as the luminescence was not inhibited by diethylenetriamine pentaacetic acid. A model system involving lipoxygenase, haematin and arachidonic acid was shown to be similar, the hydroxyl radicals coming from the interaction of haematin with the hydroperoxides, produced from the lipoxygenase-arachidonic acid reaction.  相似文献   

11.
The fatty acid oxygenase of sheep vesicular glands was solubilized with Tween-40 and purified 60-fold using ammonium sulfate precipitation and DEAE-cellulose chromatography. Glycerol (50%) stabilized the activity at all stages of purification and allowed long-term storage at −60°. The partially purified enzyme contained less than 0.7 nmoles of iron per mg of protein and less than 0.1 nmole of copper per mg of protein. Although the KI values for aspirin, BL-2338, flurbiprofen and ibuprofen remained relatively unchanged during purification, the apparent KI value for inhibition by indomethacin decreased from 120 to 2.7 μm.  相似文献   

12.
It was shown that sheep vesicular gland cytosol inhibits the peroxidase activity of prostaglandin H synthetase (PGHS). The degree of enzyme inactivation depends on cytosol concentration and incubation time. It was found that cytosol contains a glycoprotein, haptoglobin, which is one of the cytosolic basic components responsible for its ability to inhibit PGHS. Haptoglobin is supposed to participate in endogenous regulation of the PGHS activity in sheep vesicular glands.  相似文献   

13.
We previously presented evidence that aspirin (acetylsalicylic acid) inhibits prostaglandin synthetase by acetylating and active site of the enzyme. In the current work, we have labeled the enzyme from an aceton-pentane powder of sheep vesicular gland using [acetyl-3H]aspirin and purified the [3H]acetyl-protein to near homogeneity. The final preparation contains protein of a single molecular weight (85 000) and an amino-terminal sequence of Asp-Ala-Gly-Arg-Ala. The [3H]acetyl-protein contained 0.5 mol of acetyl residues per mol of protein based on amino acid composition but only a single sequence was found.  相似文献   

14.
The membrane-bound prostaglandin endoperoxide synthetase was purified until homogeneity, starting from sheep vesicular glands. The enzyme was obtained as a complex with Tween-20, containing 0.69 mg detergent per mg protein. No residual phospholipid could be detected. Prostaglandin endoperoxide synthetase appeared to be a glycoprotein, containing mannose and N-acetyl-glucosamine. No haemin or metal atoms were present. A molecular weight of 126 000 was found for the apoprotein by ultracentrifugation in 0.1% Tween solutions. The polypeptide chain without carbohydrate had a molecular weight of 69 000 as determined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The pure enzyme displays both cyclooxygenase and peroxidase activity, thus converting arachidonic acid into prostaglandin H2. The isolated synthetase requires haemin, which possibly acts as an easily dissociable prosthetic group, and a suitable hydrogen donor to protect the enzyme from peroxide inactivation and which is consumed in stoichiometric amounts to reduce the intermediate hydroperoxy group.  相似文献   

15.
Using bovine vesicular gland microsomes and [14C]indomethacin we demonstrated the presence of a specific binding site for nonsteroidal anti-inflammatory drugs. Specific binding of [14C]indomethacin to microsomes was rapid, with most of the ligand bound by 2 min at 4 degrees C. In routine binding assays the incubation temperature was maintained at 4 degrees C, because the maximal specific binding was obtained. Specific [14C]indomethacin binding appeared to increase linearly with increasing protein concentration over the range of 0.1-1.0 mg of microsomal protein. Specific binding was saturable and Scatchard analysis of binding data showed a single class of binding sites with a dissociation constant (Kd) of 3.8 microM and a maximal number of binding sites (Bmax) of about 1272 pmol/mg of protein. When these binding data were plotted according to the Hill equation, a straight line was obtained with a Hill coefficient of 1.0. Structural specificity of the nonsteroidal anti-inflammatory drug site was studied with diclofenac, arylpropionic acids (ketoprofen and indoprofen), and aspirin. Diclofenac and arylpropionic derivatives were able to compete with [14C]indomethacin for binding to microsomes, while aspirin was a weak inhibitor.  相似文献   

16.
During storage at 4 degrees C, the 17 beta-hydroxysteroid dehydrogenase activity of human placental microsomes with estradiol-17 beta was more stable than that with testosterone. In order to evaluate the basis for this difference, kinetics with C18-, C19-, and C21- steroids as substrates and/or inhibitors was studied in conjunction with an analysis of the effects of detergents. Both 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD) and 20 alpha-hydroxysteroid dehydrogenase (20 alpha-HSD) activities were detected. At pH 9.0, apparent Michaelis constants were 0.8, 1.3, and 2.3 microM for estradiol-17 beta, testosterone, and 20 alpha-dihydroprogesterone, respectively, 17 beta-HSD activity with testosterone was inhibited by estradiol-17 beta, 5 alpha-dihydrotestosterone, 5 beta-dihydrotestosterone, 20 alpha-dihydroprogesterone, and progesterone. In each case 90 to 100% inhibition was observed at 50 to 200 microM steroid. Activity with 20 alpha-dihydroprogesterone was similarly sensitive to inhibition by C19-steroids. By contrast, 25 to 45% of the activity with estradiol-17 beta was not inhibited by high concentrations of C19- or C21-steroids and differed from the 17 beta-HSD activity with testosterone and the major fraction of that with estradiol-17 beta by being insensitive to solubilization by detergent. These results are consistent with an association of two dehydrogenase activities with human placental microsomes. One recognizes C18-, C19-, and C21-steroids as substrates with comparable affinities. The second appears to be highly specific for estradiol-17 beta. The former activity may account for most if not all of the oxidation-reduction at C-17 of C19-steroids and at C-20 of C21-compounds at physiological concentrations by term placental tissue.  相似文献   

17.
18.
Using ferritin-labeled protein A and colloidal gold-labeled anti-rabbit IgG, the fate of the sheep transferrin receptor has been followed microscopically during reticulocyte maturation in vitro. After a few minutes of incubation at 37 degrees C, the receptor is found on the cell surface or in simple vesicles of 100-200 nm, in which the receptor appears to line the limiting membrane of the vesicles. With time (60 min or longer), large multivesicular elements (MVEs) appear whose diameter may reach 1-1.5 micron. Inside these large MVEs are round bodies of approximately 50-nm diam that bear the receptor at their external surfaces. The limiting membrane of the large MVEs is relatively free from receptor. When the large MVEs fuse with the plasma membrane, their contents, the 50-nm bodies, are released into the medium. The 50-nm bodies appear to arise by budding from the limiting membrane of the intracellular vesicles. Removal of surface receptor with pronase does not prevent exocytosis of internalized receptor. It is proposed that the exocytosis of the approximately 50-nm bodies represents the mechanism by which the transferrin receptor is shed during reticulocyte maturation.  相似文献   

19.
Two homologous Delta5-3-ketosteroid isomerases from Comamonas testosteroni (TI-WT) and Pseudomonas putida biotype B (PI-WT) exhibit different pH activity profiles. TI-WT loses activity below pH 5.0 due to the protonation of the conserved catalytic base, Asp-38, while PI-WT does not. Based on the structural analysis of PI-WT, the critical catalytic base, Asp-38, was found to form a hydrogen bond with the indole ring NH of Trp-116, which is homologously replaced with Phe-116 in TI-WT. To investigate the role of Trp-116, we prepared the F116W mutant of TI-WT (TI-F116W) and the W116F mutant of PI-WT (PI-W116F) and compared kinetic parameters of those mutants at different pH levels. PI-W116F exhibited significantly decreased catalytic activity at acidic pH like TI-WT, whereas TI-F116W maintained catalytic activity at acidic pH like PI-WT and increased the kcat/Km value by 2.5- to 4.7-fold compared with TI-WT at pH 3.8. The crystal structure of TI-F116W clearly showed that the indole ring NH of Trp-116 could form a hydrogen bond with the carboxyl oxygen of Asp-38 like that of PI-WT. The present results demonstrate that the activities of both PI-WT and TI-F116W at low pH were maintained by a tryptophan, which was able not only to lower the pKa value of the catalytic base but also to increase the substrate affinity. This is one example of the strategy nature can adopt to evolve the diversity of the catalytic function in the enzymes. Our results provide insight into deciphering the molecular evolution of the enzyme and creating novel enzymes by protein engineering.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号