首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inhibitory effects of nicotinamide analogs on the activity of poly(ADP-ribose)) synthetase were compared to effects on precursor incorporation into macromolecules in three lines of hepatoma cells (Morris hepatomas 5123C, 7777 and HTC). N'-methylnicotinamide was a less effective inhibitor of poly (ADP-ribose) synthetase than was 1-methylnicotinamide while both these compounds had smaller inhibitory effects on the enzyme than were seen with nicotinamide or 3-aminobenzamide. On the other hand, the incorporation of [3H]thymidine into DNA and of [3H]uridine into RNA were inhibited by N'-methylnicotinamide in the concentration range 2-20 mM but not by 1-methylnicotinamide. Under the conditions examined there were no significant effects on the incorporation of [14C]lysine and [3H]leucine in hepatoma cells. The data indicated that the inhibitory effect of N'-methylnicotinamide on nucleic acid synthesis may be unrelated to action on poly (ADP-ribose) synthetase.  相似文献   

2.
Poly(ADP-ribose) metabolism in ultraviolet irradiated human fibroblasts   总被引:5,自引:0,他引:5  
Exposure of human fibroblasts to 5 J/m2 of UV light resulted in a rapid increase of up to 1500% in the intracellular content of poly(ADP-ribose) and a rapid depletion of its metabolic precursor, NAD. When added just prior to UV treatment, the poly(ADP-ribose) polymerase inhibitor, 3-aminobenzamide, totally blocked both the increase of poly(ADP-ribose) and decrease in NAD for up to 2.5 h. Addition of 3-aminobenzamide at the time of maximal accumulation of poly(ADP-ribose) resulted in a decrease to basal levels with a half-life of approximately 6 min. The rates of accumulation of poly(ADP-ribose) and depletion of NAD were increased in the presence of either 1-beta-arabinofuranosylcytosine or hydroxyurea. Since these agents are known to cause an additional accumulation of DNA strand breaks following UV irradiation, these data provide evidence for a mechanism in which the rate of poly(ADP-ribose) synthesis following DNA damage is regulated in intact cells by the number of DNA strand breaks. Under conditions in which the synthesis of poly(ADP-ribose) was blocked, DNA repair replication induced by UV light was neither stimulated nor inhibited.  相似文献   

3.
Treatment of alkylated HeLa cells with 3-aminobenzamide, an inhibitor of poly(ADP-ribose) polymerase, increased the number of DNA strand breaks but did not affect the rate of strand rejoining. This suggests that an increase in DNA incision, not a decrease in ligation, results from the inhibition ofpoly(ADP-ribose) polymerase in cells recovering from DNA damaged by alkylating agents. Poly(ADP-ribose) DNA strand break DNA repair  相似文献   

4.
Uptake and phosphorylation of externally supplied [3H]-thymidine are fully stimulated in fertilized sea urchin eggs exposed to 5.0 micrograms/ml aphidicolin. As in untreated controls, the rate of uptake in aphidicolin-treated eggs increases greater than 50-fold shortly after fertilization, and greater than 85% of the transported thymidine is immediately phosphorylated to the triphosphate. The intracellular levels of [3H]-thymidine triphosphate (3H-dTTP) resulting from an external supply of [3H]-thymidine is therefore equal in aphidicolin-treated and untreated fertilized eggs. Under the same experimental conditions, the incorporation of externally supplied [3H]-thymidine into newly synthesized DNA of fertilized eggs is 90% inhibited by exposure to aphidicolin. The full availability of 3H-dTTP in these eggs further suggests that aphidicolin inhibits specifically at the level of DNA synthesis. This inhibitory effect is proportional to the concentration of aphidicolin between 0 and 5.0 micrograms/ml. In the continuous presence of 5.0 micrograms/ml aphidicolin, fertilized eggs fail to undergo mitotic chromosome condensation, nuclear envelope breakdown, and cytokinesis, suggesting a dependent link between these processes and the completion of nuclear DNA synthesis.  相似文献   

5.
In mammalian cells, the base excision repair (BER) pathway is the main route to counteract the mutagenic effects of DNA lesions. DNA nicks induce, among others, DNA polymerase activities and the synthesis of poly(ADP-ribose). It is shown here that poly(ADP-ribose) serves as an energy source for the final and rate-limiting step of BER, DNA ligation. This conclusion was drawn from experiments in which the fate of [(32)P]poly(ADP-ribose) or [(32)P]NAD added to HeLa nuclear extracts was systematically followed. ATP was synthesized from poly(ADP-ribose) in a pathway that strictly depended on nick-induced DNA synthesis. NAD was used for the synthesis of poly(ADP-ribose), which, in turn, was converted to ATP by pyrophosphorylytic cleavage utilizing the pyrophosphate generated from dNTPs during DNA synthesis. The adenylyl moiety was then preferentially used to adenylate DNA ligase III, from which it was transferred to the 5'-phosphoryl end of the nicked DNA. Finally, ligation to the 3'-OH end resulted in the release of AMP. When using NAD, but not poly(ADP-ribose), in the presence of 3-aminobenzamide, the entire process was blocked, confirming poly(ADP-ribosyl)ation to be the essential initial step. Thus, poly(ADP-ribose) polymerase-1, DNA polymerase beta, and ligase III interact with x-ray repair cross-complementing protein-1 within the BER complex, which ensures that ATP is generated and specifically used for DNA ligation.  相似文献   

6.
A possible role of poly(ADP-ribose) synthesis in modulating the response of V79 cells to DNA damage induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and methyl methanesulfonate (MMS) was investigated. Inhibition of [3H]thymidine (dThd) incorporation into DNA and lowering of NAD+ levels in intact cells were employed as parameters of DNA-synthesis inhibition and poly(ADP-ribose) synthesis, respectively. Dose responses of these parameters were studied in cells 2 and 24 h after treatment with the methylating agents in medium with or without dThd. The initial inhibition of DNA synthesis was uniformly associated with stimulation of poly(ADP-ribose) synthesis whether the cells were treated with MNNG or MMS, incubated with or without 20 microM dThd which did not inhibit poly(ADP-ribose) synthesis, or incubated with 3 mM dThd which did inhibit the latter synthesis. By contrast, the DNA-synthesis inhibition detected 24 h after treatment with MNNG was not associated with poly(ADP-ribose) synthesis. These data suggest that (i) the mechanism of this later inhibition of DNA synthesis is different from that of the initial inhibition, (ii) DNA-synthesis inhibition does not stimulate poly(ADP-ribose) synthesis, and (iii) single-strand breaks, resulting from N-methylation of the DNA, stimulate poly(ADP-ribose) synthesis, which may produce the initial inhibition of DNA synthesis. The initial inhibition of DNA synthesis was not uniformly associated with mutagenesis and dThd facilitation of MNNG-induced cytotoxicity and mutagenesis. This indicates that O-methylation of DNA does not stimulate poly(ADP-ribose) synthesis. Our data suggest that, in V79 cells treated with methylating agents, poly(ADP-ribose) synthesis is stimulated by single-strand breaks, inhibits DNA synthesis, and thereby serves to allow time for repair of the DNA prior to replication.  相似文献   

7.
Guinea pig peritoneal exudate macrophages actively incorporated [3H]thymidine into trichloroacetic acid-insoluble fraction in vitro. The incorporation of [3H]thymidine was almost completely inhibited by aphidicolin, an inhibitor of DNA polymerase alpha and an autoradiograph showed heavy labeling in nuclei of 15% of macrophage populations. These results indicate that the observed thymidine incorporation was due to a nuclear DNA synthesis. The [3H]thymidine incorporation was markedly suppressed when macrophages were activated by immunoadjuvants such as muramyl dipeptide (MDP) or bacterial lipopolysaccharide (LPS). The suppression of [3H]thymidine incorporation by MDP was neither due to the decrease in thymidine transport through the cell membrane, nor due to dilution by newly synthesized "cold" thymidine. An autoradiograph revealed that MDP markedly decreased the number of macrophages the nuclei of which were labeled by [3H]thymidine. These results suggest that the suppression of [3H]thymidine incorporation by the immunoadjuvants reflects a true inhibition of DNA synthesis. The inhibition of DNA synthesis by MDP was also observed in vivo. Further, it was strongly suggested that the inhibition was not caused by some mediators, such as prostaglandin E2, released from macrophages stimulated by the immunoadjuvants but caused by a direct triggering of the adjuvants at least at the early stage of activation. Cyclic AMP appears to be involved in the inhibitory reaction.  相似文献   

8.
Poly(ADP-ribose) is a nuclear polymer that is synthesized in response to DNA-strand breaks and covently modifies numerous nuclear proteins. Inhibition of poly(ADP-ribose) polymerase by 3-amino-benzamide in cells exposed to DNA-damaging agents has a variety of cellular effects, including increases in cell killing, frequency of single-strand breaks, reapir replication, and sister-chromatid exchange. These increases have been interpreted as an indication that poly(ADP-ribose) polymerization regulates the rate of ligation. Because of slow ligation, continued repair polymerization should therefore generate longer repair patches. Direct measurement of the rate of ligation of intracellular repair patches and of the size of repair patches indicates that they are unchanged when poly(ADP-ribose) polymerization is inhibited. We therefore conclude that poly(ADP-ribose) does not regulate the ligation stage of repair but instead may regulate the activity of intracellular nucleases and other enzymes that can cause additional DNA damage and changes in chromatin struture.  相似文献   

9.
The effect of (i) aphidicolin, a specific inhibitor of delta- and epsilon-polymerases, and nucleotide excision repair; (ii) 3-aminobenzamide, an inhibitor of poly(ADP-ribose) polymerase and base excision repair; and (iii) actinomycin D and cycloheximide, inhibitors of protein and RNA synthesis, respectively, on the induction of suppression of apoptosis of rat thymocytes by different doses of short-wavelength ultraviolet radiation was studied by flow cytometry. 3-Aminobenzamide suppressed the inhibition of apoptosis induced by the doses of short-wavelength ultraviolet radiation higher than 20 J/m2, increasing the cell death to a maximum. Thus, the inhibition of apoptosis by high short-wavelength ultraviolet radiation doses depends on the status of poly(ADP-ribose) polymerase and is prevented by 3-aminobenzamide. As opposed to 3-aminobenzamide, aphidicolin did not affect the cell death at short-wavelength radiation doses higher than 10 J/m2 but induced the apoptosis of unirradiated cells and cells irradiated with short-wavelength ultraviolet radiation doses lower than 10 J/m2. The inhibitors of protein and RNA synthesis cycloheximide and actinomycin D prevented the induction of apoptosis caused by low and medium doses but did not abolish the apoptosis-inhibiting activity of high doses of short-wavelength ultraviolet radiation.  相似文献   

10.
The effects of nicotinamide and structural analogs on DNA synthesis were studied in rat hepatoma (HTC) cells. Inhibitory effects of these compounds were observed on DNA synthesis as judged by the incorporation of [3H]-thymidine into DNA. Evidence for a marked effect on DNA integrity after preincubation with 1 mM methyl methanesulfonate was provided by a fluorometric technique with ethidium bromide. There was only a small or insignificant enhancement of this effect when hepatoma cells were incubated with nicotinamide. At concentrations of 2-20 mM, 3-aminobenzamide was observed to cause greater effects than nicotinamide on DNA synthesis and integrity and on cellular proliferation in HTC cells. Comparison of the effects of nicotinamide and 3-aminobenzamide with those of N'-methylnicotinamide suggested that some of the effects on DNA synthesis may not be mediated through inhibition of poly(ADP-ribose) synthetase. Inhibition of HTC cell proliferation was observed at a concentration of 3-aminobenzamide, 2 mM, which has been reported to be nontoxic for other cell types.  相似文献   

11.
The effect of the OH radical, generated in a Fenton-like reaction, on DNA structure and function was studied in a monkey kidney cell line (Vero). DNA single strand breaks were detected following exposure to 10- 100 microM concentrations of H2O2 on ice. These breaks were repaired very rapidly, and addition of the poly (ADP-ribose) transferase inhibitor, 3-aminobenzamide, resulted in an accumulation of breaks. DNA synthesis was inhibited at concentrations as high as 1- 30 mM, this effect also being reversible in approximately 60 min. 3-aminobenzamide did not affect the rate of DNA synthesis inhibition by H2O2.  相似文献   

12.
13.
The effect of DNA damage caused by N-methyl-N'-nitro-nitrosoguanidine (MNNG) on poly(ADP-ribose) synthesis, NAD levels, and purine nucleotide metabolism was studied in human T-lymphoblasts. Excessive DNA breaks caused by MNNG activated poly(ADP-ribose) polymerase and rapidly consumed intracellular NAD. NAD depletion was followed by rapid catabolism of ATP as well as induction of total purine nucleotide catabolism leading to excretion of purine catabolic products. MNNG-treated cells were not able to replenish the intracellular nucleotide pools due to the depletion of intracellular ATP and phosphoribosylpyrophosphate pools which are required for de novo purine biosynthesis. Inhibition of poly(ADP-ribose) polymerase by 3-aminobenzamide prevented both the depletion of NAD pools and the associated changes in purine nucleotide metabolism.  相似文献   

14.
In cultures of isolated mesophyll cells ofZinnia elegans, transdifferentiation into tracheary elements is induced by a combination of auxin and cytokinin and is blocked by inhibitors of DNA synthesis and poly (ADP-ribose) synthesis. During transdifferentiation, a very low level of synthesis of nuclear DNA was found in some cultured cells by microautoradiography after pulse-labeling with [3H]thymidine. Density profiles of nuclear DNA that had been double-labeledin vivo with bromodeoxyuridine (BrdU) and [3H]thymidine indicated that this DNA synthesis was repair-type synthesis. The sedimentation velocity of nucleoids increased during the culture of isolated mesophyll cells and the increase was dependent on phytohormones. This phenomenon may reflect the rejoining of DNA strand breaks after repair-type DNA synthesis during transdifferentiation. Treatment of cells with inhibitors of DNA synthesis or of poly(ADP-ribose) synthesis prevented the increase in the sedimentation velocity of nucleoids. The data suggest the involvement of DNA-repair events in the transdifferentiation of mesophyll cells into tracheary elements.  相似文献   

15.
Activity of thymidylate synthase was measured in situ in leukemia cells by tritium release from [5-3H]dUrd. Aphidicolin, an inhibitor of DNA polymerase alpha, but not thymidylate synthase, caused a time dependent inhibition of the enzyme when added to the cells after [5-3H]dUrd. Cells treated with hydroxyurea and aphidicolin in sequence before addition of [5-3H]dUrd had a high initial thymidylate synthase activity that decreased with time. This pattern indicates that thymidylate synthase activity is linked to DNA synthesis; however, its inhibition by drugs that inhibit DNA synthesis may be due to accumulation of thymidine nucleotide(s), rather than to an allosteric interaction in the replitase complex.  相似文献   

16.
The purpose of this study was to investigate possible involvement of poly(ADP-ribosyl)ation reactions in X-ray-induced cell killing, repair of potentially lethal damage (PLD), and formation and repair of radiation-induced DNA damage. As tools we used the inhibitors of poly(ADP-ribose)polymerase, 3-aminobenzamide (3AB), and 4-aminobenzamide (4AB). Both drugs inhibited PLD repair equally well but did not increase radiation-induced cell killing when cells were plated immediately after irradiation. 3AB affected repair of radiation-induced DNA damage, while 4AB had no effect. When 3AB was combined with aphidicolin (APC), it was found that the amount of DNA damage increased during the postirradiation incubation period. This means that the presence of 3AB stimulates the formation of DNA damage after X-irradiation. It is concluded that 3AB and 4AB sensitize HeLaS3 cells for radiation-induced cell killing by inhibiting repair of PLD. Because of the different effects of both inhibitors on repair of PLD and repair of radiation-induced DNA damage (a process known to be affected by inhibition of poly(ADP-ribosyl)ation), it is concluded that the observed inhibition of PLD repair is not caused by inhibition of poly(ADP-ribose)polymerase, and that the inhibitors affect repair of PLD and repair of DNA damage through independent mechanisms.  相似文献   

17.
3-Aminobenzamide, an inhibitor of poly(ADP-ribose) synthesis, has been commonly used in attempts to demonstrate a regulatory role for the polymer during a late stage of repair. When a range of inhibitor concentrations was used paradoxical results were obtained. Up to 1 mM, 3-aminobenzamide appeared to reduce DNA break frequencies in cells damaged by methyl methane sulfonate; at doses of 2 mM and above, it appeared to increase break frequencies. In the high concentration range, many nonspecific side effects and cellular toxicity predominate. Evidence used to assert a role for poly(ADP-ribose) synthesis during ligation has usually been derived from experiments using high concentrations of 3-aminobenzamide, but these may be attributed to toxic side effects. 3-Aminobenzamide stimulates a large increase in repair replication which does not result from increased excision of damaged sites or an increased patch length but may be attributable to other cellular effects such as endogenous nuclease attack on DNA. The cellular effects of 3-aminobenzamide are therefore complicated by nonspecific effects over a commonly used concentration range and evidence for a specific regulatory role of poly(ADP-ribose) in DNA repair is weak.  相似文献   

18.
Transformation of mouse C3H 10T1/2 cells by X-irradiation in vitro was blocked by the addition of 1 mM 3-aminobenzamide, an inhibitor of polyadenosine diphosphoribose (poly[ADP-ribose]) synthesis immediately after irradiation. 3-Aminobenzamide also inhibited an increase in the frequency of transformants caused by the addition of the tumor promoter, 12-O-tetradecanoylphorbol-13-acetate, 7 days after irradiation. These results demonstrate a role for poly(ADP-ribose) synthesis during the initiation and promotion stages of transformation. From previous studies it is known that poly(ADP-ribose) synthesis is stimulated by the DNA damage caused by X rays during initiation. During promotion, however, 12-O-tetradecanoylphorbol-13-acetate acted as a mitogen but did not induce detectable DNA damage, and we could detect no stimulation of poly(ADP-ribose) synthetase. The roles of poly(ADP-ribose) during initiation and during promotion must, therefore, be significantly different.  相似文献   

19.
3-Aminobenzamide (3AB) is widely used as an inhibitor of poly(ADP-ribose) synthetase to study the effect of protein ribosylation on various cellular processes, but the specificity of its inhibition has not been demonstrated. We found that 3AB has a wide range of effects on DNA precursor metabolism, as determined by high-performance liquid chromatographic separation of deoxynucleosides derived from enzymatic digestion of cellular DNA. 3AB (10-20 mM) significantly reduced cell growth in human lymphoblastoid cells. Furthermore, the incorporation of [3H]deoxycytidine into DNA was significantly enhanced relative to incorporation of [3H]deoxythymidine, [3H]deoxyguanosine, and [3H]deoxyadenosine. Incorporation of fragments of [3H]glucose into the pyrimidine fraction of DNA was significantly inhibited relative to incorporation into the purine fraction. At only 1 mM, 3AB had a major inhibitory effect on the incorporation of the methyl group from [3H]methionine into deoxyguanosine, deoxyadenosine, and deoxycytidine, with 50% inhibition into deoxyguanosine and deoxyadenosine and 90% inhibition into deoxycytidine. The specificity of 3AB inhibition to poly(ADP-ribose) synthetase is therefore doubtful in view of this variety of metabolic effects, involving pyrimidine synthesis and de novo synthesis via the one-carbon pool.  相似文献   

20.
An inhibitor of poly(ADP-ribose) synthesis, 3-aminobenzamide (3AB), at low concentrations (0.01-0.1 mM) was found to reduce strand-break frequencies and increase repair replication in human lymphoid cells damaged by methyl methanesulfonate. A concentration of 0.1 mM 3AB was adequate to produce a maximum effect on strand-break frequencies and repair replication. This evidence, together with our previous measurements, demonstrates that 3AB cannot be regarded as an inhibitor of DNA repair; rather, it actually accelerates the ligation of DNA repair patches. Previous considerations of 3AB as a repair inhibitor may have derived from the use of excessive concentrations above 1 mM that may have stimulated additional damage and from the use of ethyl alcohol as a solvent for 3AB. Interpretations of the role of single-strand breaks and poly(ADP-ribose) in DNA repair, differentiation, and gene activity may need reevaluation because they have frequently been based on an erroneous notion of 3AB as a repair inhibitor, when its mode of action is, in fact, more complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号