首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extraction and electrospinning of gelatin from fish skin   总被引:2,自引:0,他引:2  
Ultra-fine gelatin fibers were successfully fabricated by electrospinning from the solutions of Nile tilapia (Oreochromis niloticus) skin-extracted gelatin in either acetic acid or formic acid aqueous solutions. The extracted gelatin contained 7.3% moisture, 89.4% protein, 0.3% lipid, and 0.4% ash contents (on the basis of wet weight), while the bloom gel strength, the shear viscosity, and the pH values were 328 g, 17.8 mPa s, and 5.0, respectively. Both the acid concentration and the concentration of the gelatin solutions strongly influenced the properties of the as-prepared solutions and the obtained gelatin fibers. At low acid concentrations (i.e., 15% (w/v) extracted gelatin solutions in 10 and 20% (v/v) acetic acid solvents or 10-60% (v/v) formic acid solvents), a combination between smooth and beaded fibers was observed. At low concentrations of the gelatin solutions in either 40% (v/v) acetic acid solvent or 80% (v/v) formic acid solvent (i.e., 5-11%, w/v), either discrete beads or beaded fibers were obtained, while, at higher concentrations (i.e., 14-29%, w/v), only smooth or a combination of smooth and beaded fibers were obtained. The average diameters of the obtained fibers, regardless of the types of the acid solvents used, ranged between 109 and 761 nm. Lastly, cross-linking of the obtained gelatin fiber mats with glutaraldehyde vapor caused slight shrinkage from their original dimension, and the cross-linked gelatin fiber mats became stiffer.  相似文献   

2.
Chitosan is an abundantly common, naturally occurring, polysaccharide biopolymer. Its biocompatible, biodegradable, and antimicrobial properties have led to significant research toward biological applications such as drug delivery, artificial tissue scaffolds for functional tissue engineering, and wound-healing dressings. For applications such as tissue scaffolding, formation of highly porous mats of nanometer-sized fibers, such as those fabricated via electrospinning, may be quite important. Previously, strong acidic solvents and blending with synthetic polymers have been used to achieve electrospun nanofibers containing chitosan. As an alternative approach, in this work, polyethylene oxide (PEO) has been used as a template to fabricate chitosan nanofibers by electrospinning in a core-sheath geometry, with the PEO sheath serving as a template for the chitosan core. Solutions of 3 wt % chitosan (in acetic acid) and 4 wt % PEO (in water) were found to have matching rheological properties that enabled efficient core-sheath fiber formation. After removing the PEO sheath by washing with deionized water, chitosan nanofibers were obtained. Electron microscopy confirmed nanofibers of approximately 250 nm diameter with a clear core-sheath geometry before sheath removal, and chitosan nanofibers of approximately 100 nm diameter after washing. The resultant fibers were characterized with IR spectroscopy and X-ray diffraction, and the mechanical and electrical properties were evaluated.  相似文献   

3.
Uniform fibers composed of poly(methyl methacrylate) (PMMA) reinforced with progressively increasing contents of cellulose nanocrystals (CNCs), up to 41 wt% CNCs, have been successfully produced by electrospinning. The morphological, thermal and nanomechanical properties of the composite sub-micron fibers were investigated. The CNCs derived from wood pulp by sulfuric acid hydrolysis were well dispersed in solutions of PMMA and the processing solvent N,N-dimethylformamide prior to fiber formation. Well-formed fibers with controllable diameters were generated reproducibly at all CNC contents investigated including 41 wt%. The orientation of the CNCs along the fiber axis was facilitated by the electrospinning process and observed directly from microscopy examination. Shifts in thermal transitions of PMMA with increasing CNC content suggest hydrogen bonding interactions between CNC hydroxyl groups and carbonyl groups on the PMMA matrix. Nanoscale dynamic mechanical analysis (nano-DMA) was performed using nanoindentation on single fibers perpendicular to the fiber axis. Many of the current challenges associated with single fiber nanoindentation are addressed, such as fiber diameter range and minimum, depth to diameter ratio, and valid depth range under these experimental conditions. Fibers that contained 17 wt% CNCs showed a modest increase of 17% in the storage modulus of PMMA, a high modulus polymer of interest for transparent composite applications.  相似文献   

4.
The production of chitosan nanofiber mats by electrospinning presents serious difficulties due to the lack of suitable solvents and the strong influence of processing parameters on the fiber properties. Two are the main problems to be solved: to control the properties of the solution in order to obtain large area uniform fiber mats by having a stable flow rate and to avoid sparks during the process, damaging the fiber mats. In this work chitosan electrospun mats have been prepared form solutions of trifluoroacetic acid/dichloromethane mixtures, allowing solving the aforementioned problems. Mats with uniform fibers of submicron diameters without beads were obtained. Further, the influence of the different solution and process parameters on the mean fiber diameter and on the width of the distribution of the fiber sizes has been assessed. Solvent composition, needle diameter, applied voltage and traveling distance were the parameters considered in this study.  相似文献   

5.
Damage control laparotomy is commonly applied to prevent compartment syndrome following trauma but is associated with new risks to the tissue, including infection. To address the need for biomaterials to improve abdominal laparotomy management, we fabricated an elastic, fibrous composite sheet with two distinct submicrometer fiber populations: biodegradable poly(ester urethane) urea (PEUU) and poly(lactide-co-glycolide) (PLGA), where the PLGA was loaded with the antibiotic tetracycline hydrochloride (PLGA-tet). A two-stream electrospinning setup was developed to create a uniform blend of PEUU and PLGA-tet fibers. Composite sheets were flexible with breaking strains exceeding 200%, tensile strengths of 5-7 MPa, and high suture retention capacity. The blending of PEUU fibers markedly reduced the shrinkage ratio observed for PLGA-tet sheets in buffer from 50% to 15%, while imparting elastomeric properties to the composites. Antibacterial activity was maintained for composite sheets following incubation in buffer for 7 days at 37 degrees C. In vivo studies demonstrated prevention of abscess formation in a contaminated rat abdominal wall model with the implanted material. These results demonstrate the benefits derivable from a two-stream electrospinning approach wherein mechanical and controlled-release properties are contributed by independent fiber populations and the applicability of this composite material to abdominal wall closure.  相似文献   

6.
Electrospinning has been used to prepare nanofibers from diverse biopolymers. Here we report on preparation of fibers by electrospinning of levan (a polysaccharide) from distilled water. A high concentration of levan was required for fiber formation. This suggests that higher concentrations enable the formation of chain entanglements required to maintain the jet strength. In general, fiber diameter decreased with increased voltage, distance between collector plate and needle and decreased pump flow rate. X-ray diffraction of the fibers showed a highly amorphous character in levan formed from solution compared to the levan powder.  相似文献   

7.
Electrospinning is a useful technique that can generate micro and nanometer‐sized fibers. Modification of the electrospinning parameters, such as deposition target geometry, can generate uniaxially aligned fibers for use in diverse applications ranging from tissue engineering to material fabrication. For example, meshes of fibers have been shown to mimic the extracellular matrix networks for use in smooth muscle cell proliferation. Further, aligned fibers can guide neurites to grow along the direction of the fibers. Here we present a novel electrospinning deposition target that combines the benefits of two previously reported electrodes: the standard parallel electrodes and the spinning wheel with a sharpened edge. This new target design significantly improves aligned fiber yield. Specifically, the target consists of two parallel aluminum plates with sharpened edges containing a bifurcating angle of 26°. Electric field computations show a larger probable area of aligned electric field vectors. This new deposition target allows fibers to deposit on a larger cross‐sectional area relative to the existing parallel electrode and at least doubles the yield of uniaxially aligned fibers. Further, fiber alignment and morphology are preserved after collection from the deposition target. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

8.
H Pan  Y Zhang  Y Hang  H Shao  X Hu  Y Xu  C Feng 《Biomacromolecules》2012,13(9):2859-2867
Microcomposite fibers of regenerated silk fibroin (RSF) and multiwalled carbon nanotubes (MWNTs) were successfully prepared by an electrospinning process from aqueous solutions. A quiescent blended solution and a three-dimensional Raman image of the composite fibers showed that functionalized MWNTs (F-MWNTs) were well dispersed in the solutions and the RSF fibers, respectively. Raman spectra and wide-angle X-ray diffraction (WAXD) patterns of RSF/F-MWNT electrospun fibers indicated that the composite fibers had higher β-sheet content and crystallinity than the pure RSF electrospun fibers, respectively. The mechanical properties of the RSF electrospun fibers were improved drastically by incorporating F-MWNTs. Compared with the pure RSF electrospun fibers, the composite fibers with 1.0 wt % F-MWNTs exhibited a 2.8-fold increase in breaking strength, a 4.4-fold increase in Young's modulus, and a 2.1-fold increase in breaking energy. Cytotoxicity test preliminarily demonstrated that the electrospun fiber mats have good biocompatibility for tissue engineering scaffolds.  相似文献   

9.
Fiber mats with average fiber diameter ranging between 80 and 250 nm of polyvinyl alcohol (PVA)/water solution having a concentration of 4 wt.% have been prepared by electrospinning method. The influence of applied voltage, flow rate, and needle-to-collector distance on the fiber morphology and diameters has been studied. Scanning electron microscopy and atomic force microscopy are used to characterize the fibers. It has been observed that bead-free fibers of 4 wt.% PVA can be obtained at lower voltages (9 kV). Also, density and the deposition area of the fiber mats showed a clear dependence on the applied voltage, flow rate, and collector distance.  相似文献   

10.
In this paper, regenerated silk fibroin (SF) aqueous solutions were adjusted to a pH of 6.9 by mimicing the condition in the posterior division of silkworm's gland and rheological behavior of solutions was investigated. The electrospinning technique was used to prepare fibers, and non-woven mats of regenerated B. mori silk fibroin were successfully obtained. The effects of electrospinning parameters on the morphology and diameter of regenerated silk fibers were investigated by orthogonal design. Statistical analysis showed that voltage, the concentration of regenerated SF solutions and the distance between tip and collection plate were the most dominant parameters to fiber morphology, diameter and diameter distribution, respectively. An optimal electrospinning condition was obtained in producing uniform cylindrical fibers with an average diameter of 1300nm. It was as follows: the concentration 30%, voltage 40kV, distance 20cm. The structure of electrospun mats was characterized by Raman spectroscopy (RS), wide-angle X-ray diffraction (WAXD) and modulated differential scanning calorimetry (MDSC). It was found that electrospun mats were predominantly random coil/silk I structure, and the transition to silk II (beta-sheet) rich structure should be further explored.  相似文献   

11.
The electrospinning technique is a method used to produce nano and microfibers using the influence of electrostatic forces. Porous three dimensional networks of continuous and interconnected fibers as scaffolds were obtained from a poly (lactic acid) solution. The concentration of the polymeric solution, 12.5% m/w, as well as the conditions of voltage (V=11kV) and tip-metallic collector distance (H=13cm) were established to develop these scaffolds through the electrospinning process. The characteristics of the scaffolds, such as fiber diameter, sintering and the biomimetics of the characteristics of a native extra cellular matrix were verified by Scanning Electron Microscopy (SEM). The orientation induced in the material as a consequence of the electrospinning forces was studied by Differential Scanning Calorimetry (DSC) and X-Ray Diffraction (XRD).The same techniques were used to study the hydrolytic degradation of samples in a ringer solution (pH=7-7.4 at 37oC) for 12 weeks and showed evidences of superficial degradation on the microfibers. The suitability of these scaffolds for tissue engineering was studied through the primary cell culture of chondrocytes, by observing adhesion and cellular proliferation developed during 14 days of assay.  相似文献   

12.
Effects of electrospinning parameters (including voltage, collection distance, solution concentration and flow rate) on the morphology and diameter distribution of regenerated SF (silk fibroin) fiber were investigated. Afterward, SF tubular scaffold composed of homogenous fibers was fabricated at voltage of 18 kV, collection distance of 18 cm, concentration of 37%, and flow rate of 0.15 mL/min. After methanol treatment, SF tubular scaffold showed tensile strength of 3.57 MPa and porosity of 80.85%. It is satisfied that our work offers a simple method to fabricate seamless and porous tubular scaffold from SF without any additives and organic solvents. Furthermore, the results suggest that this tubular scaffold shows promising applications in small-diameter vascular graft.  相似文献   

13.
Dextran is soluble in both water and organic solvents, so it could be a versatile biomacromolecule for preparing nanofibrous electrospun membranes by blending with either water-soluble bioactive agents or hydrophobic biodegradable polymers for biomedical applications. We have formulated electrospun dextran membranes, and the effects of various processing parameters on the membrane properties were investigated. It was found that uniform nanofibrous dextran membranes could be formed by using water, DMSO/water, and DMSO/DMF mixtures as solvents through adjusting the processing conditions (solution concentration, voltage, and the distance between the electrode and the collecting plate). When water was used as a solvent, up to 10% (w/w) of bovine serum albumin (BSA) or lysozyme could be directly incorporated into the dextran electrospun membrane without compromising its morphology. No significant effect of the electrospinning process on lysozyme activity was observed. The composite electrospun membranes consisting of poly(D,L-lactide-co-glycolide) (PLGA) and dextran were obtained using DMSO/DMF (50/50, volume ratio) mixture as solvents. For cross-linking the electrospun membrane, dextran was modified by substitution of methacrylate groups at the hydroxyl sites. It was found that the electrospun membranes prepared from methacrylated dextran can be cured by UV irradiation in the presence of 1% of 2,2-dimethoxy-2-phenylacetophenone (DMPA) as a photoinitiator.  相似文献   

14.
Qi H  Hu P  Xu J  Wang A 《Biomacromolecules》2006,7(8):2327-2330
In this paper, we prepared composite fibers via electrospinning from either W/O or O/W emulsion. SEM images demonstrate the beads-in-string structures in these fibers and proved this technique to be an effective method for microencapsulation. As a practical application, Ca-alginate microspheres, which serve as reservoirs for hydrophilic drugs, were prepared in a reverse emulsion and then incorporated into poly (l-lactic acid) (PLLA) fibers by electrospinning. With the bovine serum albumin (BSA) loaded into the microspheres, the beads-in-string structure thus entrapped hydrophilic proteins in hydrophobic polymeric matrix. In the in vitro release test, BSA, which was released from composite fibers, achieved prolonged release profiles and lower burst release rates than those from naked Ca-alginate microspheres. In comparison with other well-established techniques to prepare microcapsules, such as solvent evaporation and spray-drying techniques, emulsion electrospinning features partly competing, partly complementary characteristics. Extension to other emulsion systems will be able to fabricate new types of functional structures.  相似文献   

15.
Jia B  Zhou J  Zhang L 《Carbohydrate research》2011,(11):1337-1341
Nano-fibrous mats have been successfully prepared by electrospinning of the blend solutions of cationic cellulose derivatives (PQ-4) and polyvinyl alcohol (PVA). Effects of the blending ratio and applied voltage on the morphology and diameter of the electrospun nano-fibers were investigated. The average diameter of the PQ-4/PVA blend fibers was in the range of 150–250 nm. The electrospinning process became instable and the fiber diameter distribution broadened with increasing PQ-4 content and applied voltage. The antibacterial activity of electrospun PQ-4/PVA blend mats against Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus indicated potential for biomedical use.  相似文献   

16.
This paper is the first report of electrospinning neat polyisobutylene-based thermoplastic elastomers. Two generations of these materials are investigated: a linear poly(styrene-b-isobutylene-b-styrene) (L_SIBS) triblock copolymer and a dendritic poly(isobutylene-b-p-methylstyrene) (D_IB-MS), also a candidate for biomedical applications. Cross-polarized optical microscopy shows birefringence, indicating orientation in the electrospun fibers, which undergo large elongation and shear during electrospinning. In contrast to the circular cross section of L_SIBS fibers, D_IB-MS yields dumbbell-shaped fiber cross sections for the combination of processing conditions, molecular weight, and architecture. Hydrophobic surfaces with a water contact angle as high as 146 ± 3° were obtained with D_IB-MS that had the noncircular fiber cross section and a hierarchical arrangement of nano- to micrometer-sized fibers in the mat. These highly water repellent fiber mats were found to serve as an excellent scaffold for bovine chondrocytes to produce cartilage tissue.  相似文献   

17.
《Biophysical journal》2021,120(18):3860-3868
We present a novel fiber finding algorithm (FFA) that will permit researchers to detect and return traces of individual biopolymers. Determining the biophysical properties and structural cues of biopolymers can permit researchers to assess the progression and severity of disease. Confocal microscopy images are a useful method for observing biopolymer structures in three dimensions, but their utility for identifying individual biopolymers is impaired by noise inherent in the acquisition process, including convolution from the point spread function (PSF). The new, iterative FFA we present here 1) measures a microscope’s PSF and uses it as a metric for identifying fibers against the background; 2) traces each fiber within a cone angle; and 3) blots out the identified trace before identifying another fiber. Blotting out the identified traces in each iteration allows the FFA to detect and return traces of single fibers accurately and efficiently—even within fiber bundles. We used the FFA to trace unlabeled collagen type I fibers—a biopolymer used to mimic the extracellular matrix in in vitro cancer assays—imaged by confocal reflectance microscopy in three dimensions, enabling quantification of fiber contour length, persistence length, and three-dimensional (3D) mesh size. Based on 3D confocal reflectance microscopy images and the PSF, we traced and measured the fibers to confirm that colder gelation temperatures increased fiber contour length, persistence length, and 3D mesh size—thereby demonstrating the FFA’s use in quantifying biopolymers’ structural and physical cues from noisy microscope images.  相似文献   

18.
Abstract

Two different nano- and micro-collagen fiber production methods are introduced and discussed. First one is the electrospinning method, that is very common technique to produce nanofibers from different polymeric solutions and recently collagen solutions are employed to produce nanofibers for different biomedical applications. This technique is extremely versatile method to produce nanofibers in a relatively short time, easy to control the fiber diameter and orientation with small pore sizes and a high surface area. The second method is self-assembly of collagen micro-fibers by co-extrusion method. The collagen fibers are obtained without any cross-linker, by using mainly ionic interactions. We demonstrated that self-assembled collagen fibers have well preserved their native structure (0.90 PP-II fraction), when compared with electrospun collagen fibers (0.38 PP-II fraction). However, it was only possible to produce collagen fibers with nanodimensions by using electrospinning method.  相似文献   

19.
We investigate the dependence of fiber brightness on three-dimensional fiber orientation when imaging biopolymer networks with confocal reflection microscopy (CRM) and confocal fluorescence microscopy (CFM). We compare image data of fluorescently labeled type I collagen networks concurrently acquired using each imaging modality. For CRM, fiber brightness decreases for more vertically oriented fibers, leaving fibers above ∼50° from the imaging plane entirely undetected. As a result, the three-dimensional network structure appears aligned with the imaging plane. In contrast, CFM data exhibit little variation of fiber brightness with fiber angle, thus revealing an isotropic collagen network. Consequently, we find that CFM detects almost twice as many fibers as are visible with CRM, thereby yielding more complete structural information for three-dimensional fiber networks. We offer a simple explanation that predicts the detected fiber brightness as a function of fiber orientation in CRM.  相似文献   

20.
Based on the natural sequence of Araneus diadematus Fibroin 4 (ADF4), the recombinant spider silk protein eADF4(C16) has been engineered. This highly repetitive protein has a molecular weight of 48kDa and is soluble in different solvents (hexafluoroisopropanol (HFIP), formic acid and aqueous buffers). eADF4(C16) provides a high potential for various technical applications when processed into morphologies such as films, capsules, particles, hydrogels, coatings, fibers and nonwoven meshes. Due to their chemical stability and controlled morphology, the latter can be used to improve filter materials. In this protocol, we present a procedure to enhance the efficiency of different air filter devices, by deposition of nonwoven meshes of electrospun recombinant spider silk proteins. Electrospinning of eADF4(C16) dissolved in HFIP results in smooth fibers. Variation of the protein concentration (5-25% w/v) results in different fiber diameters (80-1,100 nm) and thus pore sizes of the nonwoven mesh.Post-treatment of eADF4(C16) electrospun from HFIP is necessary since the protein displays a predominantly α-helical secondary structure in freshly spun fibers, and therefore the fibers are water soluble. Subsequent treatment with ethanol vapor induces formation of water resistant, stable β-sheet structures, preserving the morphology of the silk fibers and meshes. Secondary structure analysis was performed using Fourier transform infrared spectroscopy (FTIR) and subsequent Fourier self-deconvolution (FSD).The primary goal was to improve the filter efficiency of existing filter substrates by adding silk nonwoven layers on top. To evaluate the influence of electrospinning duration and thus nonwoven layer thickness on the filter efficiency, we performed air permeability tests in combination with particle deposition measurements. The experiments were carried out according to standard protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号