首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mouse model for mucopolysaccharidosis type III A (Sanfilippo syndrome)   总被引:3,自引:0,他引:3  
Mucopolysaccharidosis type III A (MPS III A, Sanfilippo syndrome) is a rare, autosomal recessive, lysosomal storage disease characterized by accumulation of heparan sulfate secondary to defective function of the lysosomal enzyme heparan N- sulfatase (sulfamidase). Here we describe a spontaneous mouse mutant that replicates many of the features found in MPS III A in children. Brain sections revealed neurons with distended lysosomes filled with membranous and floccular materials with some having a classical zebra body morphology. Storage materials were also present in lysosomes of cells of many other tissues, and these often stained positively with periodic-acid Schiff reagent. Affected mice usually died at 7-10 months of age exhibiting a distended bladder and hepatosplenomegaly. Heparan sulfate isolated from urine and brain had nonreducing end glucosamine- N -sulfate residues that were digested with recombinant human sulfamidase. Enzyme assays of liver and brain extracts revealed a dramatic reduction in sulfamidase activity. Other lysosomal hydrolases that degrade heparan sulfate or other glycans and glycosaminoglycans were either normal, or were somewhat increased in specific activity. The MPS III A mouse provides an excellent model for evaluating pathogenic mechanisms of disease and for testing treatment strategies, including enzyme or cell replacement and gene therapy.  相似文献   

2.
Sanfilippo syndrome type B or mucopolysaccharidosis type III B (MPS IIIB) is a lysosomal storage disorder that is inherited in autosomal recessive manner. It is characterized by systemic heparan sulfate accumulation in lysosomes due to deficiency of the enzyme alpha-N-acetylglucosaminidase (Naglu). Devastating clinical abnormalities with severe central nervous system involvement and somatic disease lead to premature death. A mouse model of Sanfilippo syndrome type B was created by targeted disruption of the gene encoding Naglu, providing a powerful tool for understanding pathogenesis and developing novel therapeutic strategies. However, the JAX GEMM Strain B6.129S6-Naglutm1Efn mouse, although showing biochemical similarities to humans with Sanfilippo syndrome, exhibits aging and behavioral differences. We observed idiosyncrasies, such as skeletal dysmorphism, hydrocephalus, ocular abnormalities, organomegaly, growth retardation, and anomalies of the integument, in our breeding colony of Naglu mutant mice and determined that several of them were at least partially related to the background strain C57BL/6. These background strain abnormalities, therefore, potentially mimic or overlap signs of the induced syndrome in our mice. Our observations may prove useful in studies of Naglu mutant mice. The necessity for distinguishing background anomalies from signs of the modeled disease is apparent.  相似文献   

3.
Sanfilippo A syndrome is an autosomal recessive lysosomal storage disease. This disease was reported in the Cayman Islands population with carrier frequency of 1/7 to 1/10 in the West Bay district of Grand Cayman. The carrier testing of Sanfilippo A disease for families at risk was carried out using the thermal characteristics of sulfamidase activity. In the present study, a search for mutations in the sulfamidase gene in an index family was performed. In addition, 77 individuals, relatives of children with Sanfilippo A syndrome, were also studied by single-strand conformation polymorphism (SSCP), restriction fragment-length polymorphism (RFLP) analyses, and sequencing. A single mutation, G746A (R245H), was found in the family, with the patient being homozygous and both parents and 1 of the 3 siblings being carriers. Among the 77 family members of the patient with Sanfilippo syndrome, the same mutation was found among carriers of the disease. The finding of a single mutation supports the idea of a founder effect, which facilitates accurate carrier identification of Sanfilippo A syndrome in the population of Cayman Islands.  相似文献   

4.
Reliable behavioural tests in animal models of neurodegenerative diseases allow us to study the natural history of disease and evaluate the efficacy of novel therapies. Mucopolysaccharidosis IIIA (MPS IIIA or Sanfilippo A), is a severe, neurodegenerative lysosomal storage disorder caused by a deficiency in the heparan sulphate catabolising enzyme, sulfamidase. Undegraded heparan sulphate accumulates, resulting in lysosomal enlargement and cellular dysfunction. Patients suffer a progressive loss of motor and cognitive function with severe behavioural manifestations and premature death. There is currently no treatment. A spontaneously occurring mouse model of the disease has been described, that has approximately 3% of normal enzyme activity levels. Behavioural phenotyping of the MPS IIIA mouse has been previously reported, but the results are conflicting and variable, even after full backcrossing to the C57BL/6 background. Therefore we have independently backcrossed the MPS IIIA model onto the C57BL/6J background and evaluated the behaviour of male and female MPS IIIA mice at 4, 6 and 8 months of age using the open field test, elevated plus maze, inverted screen and horizontal bar crossing at the same circadian time point. Using a 60 minute open field, we have demonstrated that female MPS IIIA mice are hyperactive, have a longer path length, display rapid exploratory behaviour and spend less time immobile than WT mice. Female MPS IIIA mice also display a reduced sense of danger and spend more time in the centre of the open field. There were no significant differences found between male WT and MPS IIIA mice and no differences in neuromuscular strength were seen with either sex. The altered natural history of behaviour that we observe in the MPS IIIA mouse will allow more accurate evaluation of novel therapeutics for MPS IIIA and potentially other neurodegenerative disorders.  相似文献   

5.
Heparan sulfate sulfamidase (HSS) is a lysosomal exohydrolase that, when deficient, results in intralysosomal accumulation of heparan sulfate and the clinical phenotype of Sanfilippo syndrome type A. The first animal disease homolog of human Sanfilippo syndrome type A has been recently indentified in Dachshund littermates. To identify the molecular defect, the nucleotide sequences of the normal canine HSS gene and cDNA were determined using PCR-based approaches. The coding region showed 87% nucleotide homology, and 89% amino acid sequence homology, with human HSS. All exon-intron borders were conserved. Sequence analysis of the entire coding region with exon-intron boundaries was performed in the propositus, a healthy littermate, and six unrelated normal dogs. Comparison revealed a 3-bp deletion, 737-739delCCA, resulting in the loss of threonine at position 246 in both alleles of the propositus and in one allele of a healthy littermate. Prediction of the three-dimensional structure of canine HSS, based on homology with human arylsulfatases A and B, suggested the pathogenic effect of this deletion. Six other sequence variations in exons, and 10 in introns, appear to be benign polymorphisms. This study supports the potential development of a canine model of Sanfilippo syndrome type A to evaluate gene therapy for this disorder.  相似文献   

6.
The genetic metabolic disease mucopolysaccharidosis III type C (MPS IIIC, Sanfilippo disease type C) causes progressive neurodegeneration in infants and children, leading to dementia and death before adulthood. MPS IIIC stands out among lysosomal diseases because it is the only one caused by a deficiency not of a hydrolase but of HGSNAT (heparan--glucosaminide N-acetyltransferase), which catalyzes acetylation of glycosaminoglycan heparan sulfate (HS) prior to its hydrolysis.  相似文献   

7.
Mucopolysaccharidosis IIIC (MPS IIIC, or Sanfilippo C syndrome) is a lysosomal storage disorder caused by the inherited deficiency of the lysosomal membrane enzyme acetyl-coenzyme A: alpha -glucosaminide N-acetyltransferase (N-acetyltransferase), which leads to impaired degradation of heparan sulfate. We report the narrowing of the candidate region to a 2.6-cM interval between D8S1051 and D8S1831 and the identification of the transmembrane protein 76 gene (TMEM76), which encodes a 73-kDa protein with predicted multiple transmembrane domains and glycosylation sites, as the gene that causes MPS IIIC when it is mutated. Four nonsense mutations, 3 frameshift mutations due to deletions or a duplication, 6 splice-site mutations, and 14 missense mutations were identified among 30 probands with MPS IIIC. Functional expression of human TMEM76 and the mouse ortholog demonstrates that it is the gene that encodes the lysosomal N-acetyltransferase and suggests that this enzyme belongs to a new structural class of proteins that transport the activated acetyl residues across the cell membrane.  相似文献   

8.
Cultured skin fibroblasts and peripheral leucocytes from patients with Sanfilippo A disease are strikingly deficient in sulfamidase activity (sulfamatase, EC 3.1.6.?), as measured with heparin - N35SO4. A partial sulfamidase deficiency was found in the cells of the heterozygote carriers. Since Sanfilippo A fibroblasts have normal sulfate ester hydrolase activities towards oligosaccharides prepared from 35SO4-labelled heparan sulfate by nitrous acid treatment, the basic defect in Sanfilippo A disease is considered to be the inactivity of a heparin (heparan sulfate) sulfamidase.  相似文献   

9.
Mucopolysaccharidosis type IIIA (MPS IIIA) is an autosomal recessive disease that occurs due to a deficiency of heparan sulfate sulfamidase (SGSH). The deficiency of SGSH results in the lysosomal accumulation and urinary excretion of the glycosaminoglycan heparan sulfate. The clinical severity of MPS IIIA is predominantly characterized by severe central nervous system degeneration. Naturally occurring MPS IIIA has recently been described in New Zealand Huntaway dogs, with similar disease progression and biochemical characteristics observed in severely affected MPS IIIA patients. Here, we identify the disease-causing mutation in the MPS IIIA Huntaway dog as 708-709insC. The frequency of the 708-709insC mutation in a sample group of 203 New Zealand Huntaway dogs was determined to be 3.8%. The identification of the 708-709insC mutation will permit the identification of heterozygous carriers as an initial step toward establishing a breeding colony of MPS IIIA dogs for the study of various therapeutic strategies targeted to the central nervous system.  相似文献   

10.
Ohmi K  Zhao HZ  Neufeld EF 《PloS one》2011,6(11):e27461
Sanfilippo syndrome type B (MPS IIIB) is characterized by profound mental retardation in childhood, dementia and death in late adolescence; it is caused by deficiency of α-N-acetylglucosaminidase and resulting lysosomal storage of heparan sulfate. A mouse model, generated by homologous recombination of the Naglu gene, was used to study pathological changes in the brain. We found earlier that neurons in the medial entorhinal cortex (MEC) and the dentate gyrus showed a number of secondary defects, including the presence of hyperphosphorylated tau (Ptau) detected with antibodies raised against Ptau in Alzheimer disease brain. By further use of immunohistochemistry, we now show staining in neurons of the same area for beta amyloid, extending the resemblance to Alzheimer disease. Ptau inclusions in the dentate gyrus of MPS IIIB mice were reduced in number when the mice were administered LiCl, a specific inhibitor of Gsk3β. Additional proteins found elevated in MEC include proteins involved in autophagy and the heparan sulfate proteoglycans, glypicans 1 and 5, the latter closely related to the primary defect. The level of secondary accumulations was associated with elevation of glypican, as seen by comparing brains of mice at different ages or with different mucopolysaccharide storage diseases. The MEC of an MPS IIIA mouse had the same intense immunostaining for glypican 1 and other markers as MPS IIIB, while MEC of MPS I and MPS II mice had weak staining, and MEC of an MPS VI mouse had no staining at all for the same proteins. A considerable amount of glypican was found in MEC of MPS IIIB mice outside of lysosomes. We propose that it is the extralysosomal glypican that would be harmful to neurons, because its heparan sulfate branches could potentiate the formation of Ptau and beta amyloid aggregates, which would be toxic as well as difficult to degrade.  相似文献   

11.
Fibroblasts cultured from the skin of three unrelated patients with the clinical symptoms of the Sanfilippo syndrome (mucopolysaccharidosis III) accumulated intracellularly excessive amounts of heparan sulfate and showed a lengthened turnover time for this mucopolysaccharide. They exhibited, however, neither a deficiency of heparan sulfate sulfamidase or alpha-N-acetylglucosaminidase nor of any other known glycosaminoglycan-degrading hydrolase. This new mucopolysaccharidosis was therefore designated as type C of the Sanfilippo syndrome. The abnormal heparan sulfate metabolism of Sanfilippo C fibroblasts could not be normalized by addition of crude urinary proteins or concentrated secretions from normal fibroblasts to the culture medium or by cocultivation with normal fibroblasts. The accumulated heparan sulfate was characterized by a reduced negative net charge. A small proportion of it could be adsorbed onto a cation exchange resin. It was sensitive to nitrous acid degradation under conditions where glucosamine residues with free amino groups are attacked. It is therefore suggested that the primary defect in this new mucopolysaccharidosis concerns the step which follows the hydrolysis of N-sulfonate groups in heparan sulfate degradation.  相似文献   

12.
Mok A  Cao H  Hegele RA 《Genomics》2003,81(1):1-5
Mucopolysaccharidosis type IIID (MPS IIID; Sanfilippo syndrome type D; MIM 252940) is caused by deficiency of the activity of N-acetylglucosamine-6-sulfatase (GNS), which is normally required for degradation of heparan sulfate. The clinical features of MPS IIID include progressive neurodegeneration, with relatively mild somatic symptoms. Biochemical features include accumulation of heparan sulfate and N-acetylglucosamine-6-sulfate in the brain and viscera. To date, diagnosis required a specific lysosomal enzyme assay for GNS activity. From genomic DNA of a subject with MPS IIID, we amplified and sequenced the promoter and 14 exons of GNS. We found a homozygous nonsense mutation in exon 9 (1063C --> T), which predicted premature termination of translation (R355X). We also identified two common synonymous coding single-nucleotide polymorphisms and genotyped these in samples from four ethnic groups. This first report of a mutation in GNS resulting in MPS IIID indicates the potential utility of molecular diagnosis for this rare condition.  相似文献   

13.
Sanfilippo syndrome type B, or mucopolysaccharidosis (MPS) IIIB, is an autosomal recessive disease caused by a deficiency of lysosomal alpha-N-acetylglucosaminidase (NAGLU). In Dromaius novaehollandiae (emu), a progressive neurologic disease was recently discovered, which was characterized by NAGLU deficiency and heparan sulfate accumulation. To define the molecular basis, the sequences of the normal emu NAGLU cDNA and gene were determined by PCR-based approaches using primers for highly conserved regions of evolutionarily distant NAGLU homologues. It was observed that the emu NAGLU gene is structurally similar to that of human and mouse, but the introns are considerably shorter. The cDNA had an open reading frame (ORF) of 2259 bp. The deduced amino acid sequence is estimated to share 64% identity with human, 63% with mouse, 41% with Drosophila, 39% with tobacco, and 35% with the Caenorhabditis elegans enzyme. Three normal and two affected emus were studied for nucleotide sequence covering the entire coding region and exon-intron boundaries. Unlike the human gene, emu NAGLU appeared to be highly polymorphic: 19 variations were found in the coding region alone. The two affected emus were found to be homozygous for a 2-bp deletion, 1098-1099delGG, in exon 6. The resulting frameshift predicts a longer ORF of 2370 bp encoding a polypeptide with 37 additional amino acids and 387 altered amino acids. The availability of mutation screening in emus now permits early detection of MPS IIIB in breeding stocks and is an important step in characterizing this unique, naturally occurring avian model for the development of gene transfer studies.  相似文献   

14.
Lysosomal storage diseases result in various developmental and physiological complications, including cachexia. To study the causes for the negative energy balance associated with cachexia, we assessed the impact of sulfamidase deficiency and heparan sulfate storage on energy homeostasis and metabolism in a mouse model of type IIIa mucopolysaccharidosis (MPS IIIa, Sanfilippo A syndrome). At 12-weeks of age, MPS IIIa mice exhibited fasting and postprandial hypertriglyceridemia compared with wildtype mice, with a reduction of white and brown adipose tissues. Partitioning of dietary [3H]triolein showed a marked increase in intestinal uptake and secretion, whereas hepatic production and clearance of triglyceride-rich lipoproteins did not differ from wildtype controls. Uptake of dietary triolein was also elevated in brown adipose tissue (BAT), and notable increases in beige adipose tissue occurred, resulting in hyperthermia, hyperphagia, hyperdipsia, and increased energy expenditure. Furthermore, fasted MPS IIIa mice remained hyperthermic when subjected to low temperature but became cachexic and profoundly hypothermic when treated with a lipolytic inhibitor. We demonstrated that the reliance on increased lipid fueling of BAT was driven by a reduced ability to generate energy from stored lipids within the depot. These alterations arose from impaired autophagosome–lysosome fusion, resulting in increased mitochondria content in beige and BAT. Finally, we show that increased mitochondria content in BAT and postprandial dyslipidemia was partially reversed upon 5-week treatment with recombinant sulfamidase. We hypothesize that increased BAT activity and persistent increases in energy demand in MPS IIIa mice contribute to the negative energy balance observed in patients with MPS IIIa.  相似文献   

15.
NAGLU mutations underlying Sanfilippo syndrome type B.   总被引:4,自引:0,他引:4  
Sanfilippo syndrome type B (mucopolysaccharidosis III B) is a rare autosomal recessive disease caused by deficiency of alpha-N-acetylglucosaminidase, one of the enzymes required for the lysosomal degradation of heparan sulfate. The gene for this enzyme, NAGLU, recently was isolated, and several mutations were characterized. We have identified, in amplified exons from nine fibroblast cell lines derived from Sanfilippo syndrome type B patients, 10 additional mutations: Y92H, P115S, Y140C, E153K, R203X, 650insC, 901delAA, P358L, A664V, and L682R. Four of these mutations were found in homozygosity, and only two were seen in more than one cell line. Thus, Sanfilippo syndrome type B shows extensive molecular heterogeneity. Stable transfection of Chinese hamster ovary cells, by cDNA mutagenized to correspond to the NAGLU missense mutations, did not yield active enzyme, demonstrating the deleterious nature of the mutations. Nine of the 10 amino acid substitutions identified to date are clustered near the amino or the carboxyl end of alpha-N-acetylglucosaminidase, suggesting a role for these regions in the transport or function of the enzyme.  相似文献   

16.
Sanfilippo syndrome type B, or mucopolysaccharidosis (MPS) IIIB, is an autosomal recessive disease caused by a deficiency of lysosomal α-N-acetylglucosaminidase (NAGLU). In Dromaius novaehollandiae (emu), a progressive neurologic disease was recently discovered, which was characterized by NAGLU deficiency and heparan sulfate accumulation. To define the molecular basis, the sequences of the normal emu NAGLU cDNA and gene were determined by PCR-based approaches using primers for highly conserved regions of evolutionarily distant NAGLU homologues. It was observed that the emu NAGLU gene is structurally similar to that of human and mouse, but the introns are considerably shorter. The cDNA had an open reading frame (ORF) of 2259 bp. The deduced amino acid sequence is estimated to share 64% identity with human, 63% with mouse, 41% with Drosophila, 39% with tobacco, and 35% with the Caenorhabditis elegans enzyme. Three normal and two affected emus were studied for nucleotide sequence covering the entire coding region and exon–intron boundaries. Unlike the human gene, emu NAGLU appeared to be highly polymorphic: 19 variations were found in the coding region alone. The two affected emus were found to be homozygous for a 2-bp deletion, 1098-1099delGG, in exon 6. The resulting frameshift predicts a longer ORF of 2370 bp encoding a polypeptide with 37 additional amino acids and 387 altered amino acids. The availability of mutation screening in emus now permits early detection of MPS IIIB in breeding stocks and is an important step in characterizing this unique, naturally occurring avian model for the development of gene transfer studies.  相似文献   

17.
Summary Glucosamine-6-sulphatase (G6S), a lysosomal enzyme found in all cells, is involved in the catabolism of heparin, heparan sulphate, and keratan sulphate. Deficiency of G6S results in the accumulation of undegraded substrate and the lysosomal storage disorder mucopolysaccharidosis type IIID (Sanfilippo D syndrome). Regional mapping by in situ hybridization of a 3H-labelled human G6S cDNA probe to human metaphase chromosomes indicated that the G6S gene is localized to chromosome 12 at q14. The localization of the G6S gene to chromosome 12 was confirmed using the G6S cDNA clone in Southern blot hybridization analysis of DNA from human x mouse hybrid cell lines.  相似文献   

18.
Sulphamidase     
Sulphamidase is one of four lysosomal proteins whose deficiency clinically manifests as Sanfilippo syndrome. Deficiency of sulphamidase results in the lysosomal storage of the glycosaminoglycan (GAG) heparan sulphate (HS) and is termed mucopolysaccharidosis type IIIA (MPS IIIA). Sulphamidase catalyses the hydrolysis of an N-linked sulphate from the nonreducing terminal glucosaminide residue of HS (Fig. 1). It is unique among the known lysosomal sulphatases involved in GAG degradation in that it is an N-sulphatase, all the others being O-sulphatases. Purification of sulphamidase from human liver has facilitated the amino-terminal sequencing of the protein and hence the isolation of cDNA and genomic clones for sulphamidase. This has in turn made possible a range of further studies aimed at better diagnosis, treatment and understanding of MPS IIIA.  相似文献   

19.

Background

Sanfilippo syndrome type B (MPS III B) is caused by a deficiency of α-N-acetylglucosaminidase enzyme, leading to accumulation of heparan sulfate within lysosomes and eventual progressive cerebral and systemic multiple organ abnormalities. However, little is known about the competence of the blood-brain barrier (BBB) in MPS III B. BBB dysfunction in this devastating disorder could contribute to neuropathological disease manifestations.

Methodology/Principal Findings

In the present study, we investigated structural (electron microscope) and functional (vascular leakage) integrity of the BBB in a mouse model of MPS III B at different stages of disease, focusing on brain structures known to experience neuropathological changes. Major findings of our study were: (1) endothelial cell damage in capillary ultrastructure, compromising the BBB and resulting in vascular leakage, (2) formation of numerous large vacuoles in endothelial cells and perivascular cells (pericytes and perivascular macrophages) in the large majority of vessels, (3) edematous space around microvessels, (4) microaneurysm adjacent to a ruptured endothelium, (6) Evans Blue and albumin microvascular leakage in various brain structures, (7) GM3 ganglioside accumulation in endothelium of the brain microvasculature.

Conclusions/Significance

These new findings of BBB structural and function impairment in MPS III B mice even at early disease stage may have implications for disease pathogenesis and should be considered in current and future development of treatments for MPS III B.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号