首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polypeptide Elongation Factors of the Developing Chick Brain   总被引:2,自引:1,他引:1  
Abstract: The polypeptide elongation factors (EF-1L, EF-1H, and EF-2) of the developing chick brain were separated and purified by means of a combination of gel chromatographic methods. The molecular weight of EF-1H of the chick brain ranged from 5 to 10 × 105, and was different from that of the chick liver (about 7 × 105). The molecular weight of other purified factors was about 5 × 104 for EF-1L. and 9.4 × 104 for EF-2. High activities of polyphenylalanine (poly-Phe) synthesis per mg protein in the developing chick brain were observed between the 3rd embryonic week and the 1st post-hatch week and declined afterwards. On the other hand, the levels of both EF-1 and EF-2 per mg protein in the brain were observed to be high in an early embryonic stage, gradually declining afterwards to the adult level. The brain EF-1L was a major component of EF-1 in an early embryonic stage, while EF-1H became recognizable in the 3rd embryonic week. Moreover, the EF-1H activities were found to be more than double with regard to the binding reaction and to be more than 10-fold as active in respect to poly-Phe synthesis in comparison with the activities of EF-1L. It is proposed that the brain EF-1H could be due to aggregates consisting of EF-1L, a stimulatory factor, and other components.  相似文献   

2.
Elongation-factor-3 (EF-3) is an essential factor of the fungal protein synthesis machinery. In this communication the structure of EF-3 from Saccharomyces cerevisiae is characterized by differential scanning calorimetry (DSC), ultracentrifugation, and limited tryptic digestion. DSC shows a major transition at a relatively low temperature of 39 degrees C, and a minor transition at 58 degrees C. Ultracentrifugation shows that EF-3 is a monomer; thus, these transitions could not reflect the unfolding or dissociation of a multimeric structure. EF-3 forms small aggregates, however, when incubated at room temperature for an extended period of time. Limited proteolysis of EF-3 with trypsin produced the first cleavage at the N-side of Gln775, generating a 90-kDa N-terminal fragment and a 33-kDa C-terminal fragment. The N-terminal fragment slowly undergoes further digestion generating two major bands, one at approximately 75 kDa and the other at approximately 55 kDa. The latter was unusually resistant to further tryptic digestion. The 33-kDa C-terminal fragment was highly sensitive to tryptic digestion. A 30-min tryptic digest showed that the N-terminal 60% of EF-3 was relatively inaccessible to trypsin, whereas the C-terminal 40% was readily digested. These results suggest a tight structure of the N-terminus, which may give rise to the 58 degrees C transition, and a loose structure of the C-terminus, giving rise to the 39 degrees C transition. Three potentially functional domains of the protein were relatively resistant to proteolysis: the supposed S5-homologous domain (Lys102-Ile368), the N-terminal ATP-binding cassette (Gly463-Lys622), and the aminoacyl-tRNA-synthase homologous domain (Glu820-Gly865). Both the basal and ribosome-stimulated ATPase activities were inactivated by trypsin, but the ribosome-stimulated activity was inactivated faster.  相似文献   

3.
EF-1a binds aminoacyl-tRNA to the ribosome with the hydrolysis of GTP; the complex facilitates the exchange of GDP for GTP to initiate another round of elongation. To examine the subunit structure of EF-1 and phosphorylation by protein kinase CKII, recombinant , , and subunits from rabbit were expressed in E. coli and the subunits were reconstituted into partial and complete complexes and analyzed by gel filtration. To determine the availability of the and subunits for phosphorylation by CKII, the subunits and the reconstituted complexes were examined as substrates for CKII. Formation of the nucleotide exchange complex increased the rate of phosphorylation of the subunit and reduced the Km, while addition of to or the complex inhibited phosphorylation by CKII. However, a had little effect on phosphorylation of . Thus, the and subunits in EF-1 were differentially phosphorylated by CKII, in that phosphorylation of was altered by association with other subunits, while the site on was always available for phosphorylation by CKII. From the availability of the subunits for phosphorylation by CKII and the composition of the reconstituted partial and complete complexes, a model for the subunit structure of EF-1 consisting of (22)2 is proposed and discussed.  相似文献   

4.
Abstract: The higher-molecular-weight elongation factor-1 (EF-1H) of the chick brain was observed to contain three subunits (denominated α, β, and γ), contrary to a previous report that the brain EF-1H consisted of aggregates of low-molecular-weight elongation factor- 1 (EF-1L). Crude EF-1H, obtained from 20-day embryonic brain, was treated with 0.4 M ammonium chloride and 0.1 mM GTP, and EF-1βγ, was obtained using a DEAE-Sephadex column equilibrated in 0.025 mM GTP. Both EF-1β, and EF-1γ, were isolated by means of a DE-52 column equilibrated in 6 M urea and were found to have molecular weights of 2.8 and 4.8 × 104, respectively. EF-1β and EF-1γ were also obtained from young rat and calf brains by the same procedures. The molecular weight of the isolated EF-1α was 5 × 104. It was found that EF-1β stimulated the two EF-1α-dependent reactions, i.e., phenylalanyl-tRNA binding (reaction 1) and polyphenylalanine synthesis (reaction 2), and also stimulated the nucleotide exchange reaction in the EF- 1α-guanine nucleotide binary complex (reaction 3). The degrees of stimulation of reactions 1, 2, and 3 by the addition of EF-1β were 2 to 3 times, about 18 times, and 2 to 3 times as much as with EF-1α alone, respectively. The amino acid compositions of EF-1α -1β, and -1γ and EF-2 were very similar to those of other eukaryotic tissues. Thus the constituents and properties of EFs of the brain were found to be basically similar to those of other tissues of eukaryotes, although EF-1β, and EF-1, had not been reported in the brain. A possible physiological significance of EF-1β during brain development is also discussed.  相似文献   

5.
Phylogenetic relationships within theGibberella fujikuroi species complex were extended to newly discovered strains using nucleotide characters obtained by sequencing polymerase chain reaction (PCR) amplified DNA from 4 loci used in a previous study [nuclear large subunit 28S rDNA, nuclear ribosomal internal transcribed spacer (ITS) region, mitochondriaal small subunit (mtSSU) ribosomal DNA, and β-tubulin] together with two newly sampled protein-encoding nuclear genes, translation elongation factor EF-1α and calmodulin. Sequences from the ribosomal ITS region were analyzed separately and found to contain of two highly divergent, nonorthologous ITS2 types. Phylogenetic analysis of the individual and combined datasets identified 10 new phylogenetically distinct species distributed among the following three areas: 2 within Asia and 4 within both Africa and South America. Hypotheses of the monophyly ofFusarium subglutinans and its two formae speciales, f. sp.pini and f. sp.ananas, were strongly rejected by a likelihood analysis. Maximum parsimony results further indicate that the protein-encoding nuclear genes provide considerably more phylogenetic signal that the ribosomal genes sequenced. Relative apparent synapomorphy analysis was used to detect long-branch attraction taxa and to obtain a statistical measure of phylogenetic signal in the individual and combined datasets.  相似文献   

6.
7.
Catalysis of sequential reactions is often envisaged to occur by channeling of substrate between enzyme active sites without release into bulk solvent. However, while there are compelling physiological rationales for direct substrate transfer, proper experimental support for the hypothesis is often lacking, particularly for metabolic pathways involving RNA. Here, we apply transient kinetics approaches developed to study channeling in bienzyme complexes to an archaeal protein synthesis pathway featuring the misaminoacylated tRNA intermediate Glu-tRNAGln. Experimental and computational elucidation of a kinetic and thermodynamic framework for two-step cognate Gln-tRNAGln synthesis demonstrates that the misacylating aminoacyl-tRNA synthetase (GluRSND) and the tRNA-dependent amidotransferase (GatDE) function sequentially without channeling. Instead, rapid processing of the misacylated tRNA intermediate by GatDE and preferential elongation factor binding to the cognate Gln-tRNAGln together permit accurate protein synthesis without formation of a binary protein-protein complex between GluRSND and GatDE. These findings establish an alternate paradigm for protein quality control via two-step pathways for cognate aminoacyl-tRNA formation.  相似文献   

8.
Regulation at the level of translation in eukaryotes is feasible because of the longer lifetime of eukaryotic mRNAs in the cell. The elongation stage of mRNA translation requires a substantial amount of energy and also eukaryotic elongation factors (eEFs). The important component of eEFs, i.e. eEF2 promotes the GTP-dependent translocation of the nascent protein chain from the A-site to the P-site of the ribosome. Mostly the eEF2 is regulated by phosphorylation and dephosphorylation by a specific kinase known as eEF2 kinase, which itself is up-regulated by various mechanisms in the eukaryotic cell. The activity of this kinase is dependent on calcium ions and calmodulin. Recently it has been shown that the activity of eEF2 kinase is regulated by MAP kinase signalling and mTOR signalling pathway. There are also various stimuli that control the peptide chain elongation in eukaryotic cell; some stimuli inhibit and some activate eEF2. These reports provide the mechanisms by which cells likely serve to slow down protein synthesis and conserve energy under nutrient deprived conditions via regulation of eEF2. The regulation via eEF2 has also been seen in mammary tissue of lactating cows, suggesting that eEF2 may be a limiting factor in milk protein synthesis. Regulation at this level provides the molecular understanding about the control of protein translocation reactions in eukaryotes, which is critical for numerous biological phenomenons. Further the elongation factors could be potential targets for regulation of protein synthesis like milk protein synthesis and hence probably its foreseeable application to synthetic biology.  相似文献   

9.
The activity of elongation factor Tu (EF-Tu) from Escherichiacoli in eucaryotic protein synthesis systems was investigated. EF-Tu was found to inhibit polyphenylalanine synthesis when incubated with Artemia 80S ribosomes, purified rabbit reticulocyte elongation factor Tu (eEF-Tu) and partially purified reticulocyte translocase enzyme, eEF-G. The inhibition could be overcome by supplying the system with additional eEF-Tu. EF-Tu also inhibited protein synthesis in rabbit reticulocyte lysates. Data presented in this report indicate that inhibition by EF-Tu results from the accumulation of ternary complexes of the protein factor, GTP and aminoacyl-tRNA which do not interact with the ribosomal A-site of 80S ribosomes under physiological conditions.  相似文献   

10.
雷公藤内酯醇对 PC12细胞增殖的抑制作用及机制初探   总被引:3,自引:0,他引:3  
目的:研究雷公藤内酯醇(triptolide)对PC12细胞增殖的影响及其作用的机制,为其在临床上治疗肿瘤提供实验依据.方法:利用形态学观察、四甲基偶氮唑(MTT)比色分析、流式细胞术和逆转录聚合酶链式反应(RTPCR)检测雷公藤内酯醇对体外培养的嗜铬细胞瘤细胞(PC12 cell)增殖的影响.结果:雷公藤内酯醇(5×103、25×103 g/L)与PC12细胞作用24 h、48 h或72 h均可抑制PC12细胞的增殖,并且这种抑制作用可随着雷公藤内酯醇浓度的增加而增强.但低浓度的雷公藤内酯醇(1×103g/L)对PC12细胞增殖无明显影响.5×103 g/L雷公藤内酯醇与PC12细胞作用24 h后,可使细胞周期中的G0~G1期比例增加,S期比例下降.PC12细胞与雷公藤内酯醇作用后,细胞的翻译延伸因子2A3-2的表达减弱,而且作用48 h与作用24 h相比,2A3-2的表达减弱更为明显.结论:雷公藤内酯醇可抑制PC12细胞的增殖,该抑制可能是通过改变2A3-2基因的表达从而阻止细胞的G0~G1期向S期过渡来实现的.  相似文献   

11.
The effects and signaling mechanisms of brain-derived neurotrophic factor (BDNF) on translation elongation were investigated in cortical neurons. BDNF increased the elongation rate approximately twofold, as determined by measuring the ribosomal transit time. BDNF-accelerated elongation was inhibited by rapamycin, implicating the mammalian target of rapamycin (mTOR). To explore the mechanisms underlying these effects, we examined the protein phosphorylation cascades that lead to the activation of translation elongation in neurons. BDNF increased eukaryote elongation factor 1A (eEF1A) phosphorylation and decreased eEF2 phosphorylation. Whereas eEF2 phosphorylation levels altered by BDNF were inhibited by rapamycin, eEF1A phosphorylation was not affected by rapamycin or PD98059, a mitogen-activated protein kinase kinase (MEK) inhibitor. BDNF induced phosphorylation of eEF2 kinase (Ser366), as well as decreased its kinase activity. All these events were inhibited by rapamycin. Furthermore, mTOR siRNA, which reduced mTOR levels up to 50%, inhibited the BDNF-induced enhancement in elongation rate and decrease in eEF2 phosphorylation. These results strongly suggest that BDNF enhances translation elongation through the activation of the mTOR-eEF2 pathway.  相似文献   

12.
An extensive nucleotide sequence homology between the 3′-end of the 16 S ribosomal RNA and segments of bacteriophage MS2 or Qβ RNA is described. In addition, a notable sequence homology of coliphage RNAs with several other segments of ribosomal RNA is shown. The role of bacterial proteins in the recognition of phage RNA, and the resemblance of phage and host RNAs as the molecular basis of RNA phage parasitism is discussed.The problem of quantifying the degree of homology is discussed in the Appendix with a preliminary attempt towards a solution. A relative measure of homology is described, and used to analyze statistically the data obtained.  相似文献   

13.
Jiang S  Wolfe CL  Warrington JA  Norcum MT 《FEBS letters》2005,579(27):6049-6054
Eukaryotic valyl-tRNA synthetase (ValRS) and the heavy form of elongation factor 1 (EF-1H) are isolated as a stable high molecular mass complex that catalyzes consecutive steps in protein biosynthesis--aminoacylation of tRNA and its transfer to elongation factor. Herein is the first three-dimensional structure of the particle as calculated from electron microscopic images of negatively stained samples of the human ValRS/EF-1H complex. The ca. 12 x 8 nm particle has two distinct domains and each appears to have twofold symmetry. Bound antibodies place two delta subunits near the particle's center. These data support a dimeric head-to-head arrangement of particle components.  相似文献   

14.
Abstract: Piriformospora indica (Hymenomycetes, Basidiomycota) is a newly described endophyte which interacts with the roots of a great variety of plants, showing a positive effect on biomass production. In order to obtain a tool for molecular studies on P. indica, Pitef 1 encoding the translation elongation factor EF-1α in P. indica has been cloned and analysed. Comparison of the genomic and cDNA sequence revealed the presence of seven introns in the coding part of the gene and at least one in the 5'untranslated region. Pitef 1 is only present as one copy in the genome, as determined by Southern blot analysis. Interaction with roots of Zea mays in a time course experiment was analysed in relation to hyphal development and RNA accumulation, showing high expression of this gene. The Pitef 1 promoter should therefore be a good tool to construct vectors for the development of a transformation system for P. indica. The gene Pitef 1 might, in addition, be useful for estimating the amount of active mycelium during in planta development and for the calibration of RNA accumulation analyses of differentially expressed fungal genes.  相似文献   

15.
16.
可溶性无机焦磷酸酶在天然橡胶生物合成中具有重要的调控作用,HbSIP2是胶乳中关键的可溶性无机焦磷酸酶基因。为了深入了解HbSIP2调控橡胶生物合成的机理,本研究对HbSIP2互作蛋白进行了筛选和鉴定。结果表明:诱饵载体p GBKT7-Hb SIP2无自激活活性,且对酵母无毒性作用,可以用于酵母文库筛选。将诱饵载体与橡胶树胶乳cDNA文库进行杂交,初步筛选获得20个与HbSIP2互作的蛋白。进一步通过双分子荧光互补实验证实,Hb SIP2能够与橡胶延伸因子发生蛋白互作。本研究结果为HbSIP2调控橡胶生物合成的机理研究提供了重要的理论依据。  相似文献   

17.
A cellular ADP-ribosyltransferase activity has been found in a variety of animals and tissues. The enzyme transfers ADP-ribose from NAD to elongation factor 2, inactivating the factor and thus inhibitingin vitro protein synthesis. Although, the mechanism of action of the cellular enzyme appears similar to diphtheria toxin andPseudomonas exotoxin A, it differs from the toxins in that only a fraction of the EF-2 pool is modified. The endogenously ADP-ribosylated EF-2 has been detected by a variety of methods including two-dimensional electrophoresis and immunoprecipitation with elongation factor 2 antibody. The nature of the cellular ADP-ribosyltransferase and its physiological significance are unknown.  相似文献   

18.
Heterotrimeric a/eIF2alphabetagamma (archaeal homologue of the eukaryotic translation initiation factor 2 with alpha, beta and gamma subunits) delivers charged initiator tRNA (tRNAi) to the small ribosomal subunit. In this work, we determined the structures of aIF2gamma from the archaeon Sulfolobus solfataricus in the nucleotide-free and GDP-bound forms. Comparison of the free, GDP and Gpp(NH)p-Mg2+ forms of aIF2gamma revealed a sequence of conformational changes upon GDP and GTP binding. Our results show that the affinity of GDP to the G domain of the gamma subunit is higher than that of Gpp(NH)p. In analyzing a pyrophosphate molecule binding to domain II of the gamma subunit, we found a cleft that is very suitable for the acceptor stem of tRNA accommodation. It allows the suggestion of an alternative position for Met-tRNA i Met on the alphagamma intersubunit dimer, at variance with a recently published one. In the model reported here, the acceptor stem of the tRNAi is approximately perpendicular to that of tRNA in the ternary complex elongation factor Tu-Gpp(NH)p-tRNA. According to our analysis, the elbow and T stem of Met-tRNA i Met in this position should make extensive contact with the alpha subunit of aIF2. Thus, this model is in good agreement with experimental data showing that the alpha subunit of aIF2 is necessary for the stable interaction of aIF2gamma with Met-tRNA i Met.  相似文献   

19.
In Eukarya and Archaea, translation initiation factor 2 (eIF2/aIF2), which contains three subunits (α, β, and γ), is pivotal for binding of charged initiator tRNA to the small ribosomal subunit. The crystal structure of the full-sized heterotrimeric aIF2 from Sulfolobus solfataricus in the nucleotide-free form has been determined at 2.8-Å resolution. Superposition of four molecules in the asymmetric unit of the crystal and the comparison of the obtained structures with the known structures of the aIF2αγ and aIF2βγ heterodimers revealed high conformational flexibility in the α- and β-subunits. In fact, the full-sized aIF2 consists of a rigid central part, formed by the γ-subunit, domain 3 of the α-subunit, and the N-terminal α-helix of the β-subunit, and two mobile “wings,” formed by domains 1 and 2 of the α-subunit, the central part, and the zinc-binding domain of the β-subunit. High structural flexibility of the wings is probably required for interaction of aIF2 with the small ribosomal subunit. Comparative analysis of all known structures of the γ-subunit alone and within the heterodimers and heterotrimers in nucleotide-bound and nucleotide-free states shows that the conformations of switch 1 and switch 2 do not correlate with the assembly or nucleotide states of the protein.  相似文献   

20.
Smith EM  Proud CG 《The EMBO journal》2008,27(7):1005-1016
The calcium/calmodulin-dependent kinase that phosphorylates and inactivates eukaryotic elongation factor 2 (eEF2 kinase; eEF2K) is subject to multisite phosphorylation, which regulates its activity. Phosphorylation at Ser359 inhibits eEF2K activity even at high calcium concentrations. To identify the kinase that phosphorylates Ser359 in eEF2K, we developed an extensive purification protocol. Tryptic mass fingerprint analysis identified it as cdc2 (cyclin-dependent kinase 1). cdc2 co-purifies with Ser359 kinase activity and cdc2-cyclin B complexes phosphorylate eEF2K at Ser359. We demonstrate that cdc2 contributes to controlling eEF2 phosphorylation in cells. cdc2 is activated early in mitosis. Kinase activity against Ser359 in eEF2K also peaks at this stage of the cell cycle and eEF2 phosphorylation is low in mitotic cells. Inactivation of eEF2K by cdc2 may serve to keep eEF2 active during mitosis (where calcium levels rise) and thereby permit protein synthesis to proceed in mitotic cells. Amino-acid starvation decreases cdc2's activity against eEF2K, whereas loss of TSC2 (a negative regulator of mammalian target of rapamycin complex 1(mTORC1)) increases it. These data closely match the control of Ser359 phosphorylation and indicate that cdc2 may be regulated by mTORC1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号