首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phenotypic structure of human populations is shaped by a number of factors such as population size and marital migration. This paper examines the impact of migration on the between-village phenotypic differentiation of the Jirels, a tribal group of eastern Nepal. Data on stature and five cranial measurements for 526 individuals (males and females) are utilized to illustrate the patterns of phenotypic variation. A permutation method is used to generate the phenotypic consequences of random migration constrained to observed levels of movement. The results suggest that Jirel migration is nonrandom and that it produces higher levels of phenotypic differentiation than would result from a random migration process.  相似文献   

2.
The impact of population structure on phenotypic differentiation is most frequently considered in terms of between-subdivision variation. However, the demographic and social structures of a population also induce changes in within-group variation. We analyze the intragenerational dynamics of within-group variation for the Jirels, a tribal population of eastern Nepal. In the analyses we utilized age- and sex-corrected cranial measures (head length, head breadth, bizygomatic diameter, minimum frontal diameter, and head circumference) available for 526 adults (ages 15-54 years). We used a multivariate measure of variance, the standardized generalized variance, to assess levels of within-village variability, quantifying the sampling variance for this statistic by using a jackknife methodology. To generate null expectations of within-group variation, we used permutation procedures, which permit robust testing of significance without distributional assumptions. We also compared the within-birthplace variation in adults to the observed within-residence variation to examine migration effects. Contrary to expectation, some villages with high rates of in-migration have less variability than those with few migrants. When differences between the sexes at birth are controlled for, females in some villages exhibit greater variance than males, reflecting known differences in sex-specific dispersal.  相似文献   

3.
The influence of mating practices on genetic structure has been an area of great interest for anthropologists. In this paper, the techniques of potential mates analysis are employed to explore the mating patterns observed among the Jirels, a tribal population of eastern Nepal. Genealogical, anthropometric, dermatoglyphic, and demographic data for members of seven Jirel villages are used. Potential mate pools for a sample of 268 females are enumerated by village. Age structure and the Jirel restriction against clan endogamy are found to severely limit the number of males who are potential mates for a given female. The mating structure of the population is illuminated by statistical analysis of the characteristics of 160 actual mate pairs and all corresponding potential mate pairs. Using this approach several general mate choice practices were verified: 1) biological kin tend to be avoided as mates, 2) members of the same clan are excluded as potential mates, 3) mate exchange between clans is nonrandom, 4) individuals similar in age tend to be selected as mates, and 5) mates are drawn from the natal village more often than random expectation. A multivariate phenotypic distance measure between individuals did not reveal any evidence for assortative mating for either anthropometric or dermatoglyphic characters.  相似文献   

4.
Recent controversies surrounding models of modern human origins have focused on among-group variation, particularly the reconstruction of phylogenetic trees from mitochondrial DNA (mtDNA) and, the dating of population divergence. Problems in tree estimation have been seen as weakening the case for a replacement model and favoring a multiregional evolution model. There has been less discussion of patterns of within-group variation, although the mtDNA evidence has consistently shown the greatest diversity within African populations. Problems of interpretation abound given the numerous factors that can influence within-group variation, including the possibility of earlier divergence, differences in population size, patterns of population expansion, and variation in migration rates. We present a model of within-group phenotypic variation and apply it to a large set of craniometric data representing major Old World geographic regions (57 measurements for 1,159 cases in four regions: Europe, Sub-Saharan Africa, Australasia, and the Far East). The model predicts a linear relationship between variation within populations (the average within-group variance) and variation between populations (the genetic distance of populations to pooled phenotypic means). On a global level this relationship should hold if the long-term effective population sizes of each region are correctly specified. Other potential effects on withingroup variation are accounted for by the model. Comparison of observed and expected variances under the assumption of equal effective sizes for four regions indicates significantly greater within-group variation in Africa and significantly less within-group variation in Europe. These results suggest that the long-term effective population size was greatest in Africa. Closer examination of the model suggests that the long-term African effective size was roughly three times that of any other geographic region. Using these estimates of relative population size, we present a method for analyzing ancient population structure, which provides estimates of ancient migration. This method allows us to reconstruct migration history between geographic regions after adjustment for the effect of genetic drift on interpopulational distances. Our results show a clear isolation of Africa from other regions. We then present a method that allows direct estimation of the ancient migration matrix, thus providing us with information on the actual extent of interregional migration. These methods also provide estimates of time frames necessary to reach genetic equilibrium. The ultimate goal is extracting as much information from present-day patterns of human variation relevannt to issues of human origins. Our results are in agreement with mismatch distribution analysis of mtDNA, and they support a “weak Garden o Eden” model. In this model, modern-day variation can be explained by divergence from an initial source (perhaps Africa) into a number o small isolated populations, followed by later population expansion throughout our species. The major populationn expansions of Homo sapiens during and after the late Pleistocene have had the effect of “freezing” ancient patterns of population structure. While this is not the only possible scenario, we do note the close agreement with ecent analyses of mtDNA mismatch distibutions. © 1994 Wiley-Liss, Inc.  相似文献   

5.
Colonization of an archipelago sets the stage for adaptive radiation. However, some archipelagos are home to spectacular radiations, while others have much lower levels of diversification. The amount of gene flow among allopatric populations is one factor proposed to contribute to this variation. In island colonizing birds, selection for reduced dispersal ability is predicted to produce changing patterns of regional population genetic structure as gene flow-dominated systems give way to drift-mediated divergence. If this transition is important in facilitating phenotypic divergence, levels of genetic and phenotypic divergence should be associated. We consider population genetic structure and phenotypic divergence among two co-distributed, congeneric (Genus: Zosterops) bird species inhabiting the Vanuatu archipelago. The more recent colonist, Z. lateralis, exhibits genetic patterns consistent with a strong influence of distance-mediated gene flow. However, complex patterns of asymmetrical gene flow indicate variation in dispersal ability or inclination among populations. The endemic species, Z. flavifrons, shows only a partial transition towards a drift-mediated system, despite a long evolutionary history on the archipelago. We find no strong evidence that gene flow constrains phenotypic divergence in either species, suggesting that levels of inter-island gene flow do not explain the absence of a radiation across this archipelago.  相似文献   

6.
Evolutionarily significant units (ESUs) differ in the extent to which they capture, or even consider, adaptive variation, and most such designations are based solely on neutral genetic differences that may not capture variation relevant to species' adaptabilities to changing environmental conditions. While concordant patterns of divergence among data sets (i.e. neutral and potentially non-neutral characters) can strengthen ESU designations, determining whether such criteria are met for highly variable taxa is especially challenging. This study tests whether previously defined ESUs for endangered Panamanian golden frogs (Atelopus varius and Atelopus zeteki) exhibit concordant variation among multiple phenotypic traits and mitochondrial DNA sequences, and the extent to which such divergence corresponds to environmental differences. Multivariate analyses identify phenotypic and genetic differentiation consistent with proposed ESUs and support the status of A. varius and A. zeteki as separate species. Moreover, the significant association detected between ESU co-membership and genetic similarity, which remained strong after removing the effect of geographic distance, also indicates that genetic differences are not simply due to isolation by distance. Two phenotypic characters (body size and the extent of dorsal black patterning) that differ among ESUs also co-vary with environmental differences, suggesting that to the extent that these phenotypic differences are heritable, variation may be associated with adaptive divergence. Lastly, discriminant function analyses show that the frogs can be correctly assigned to ESUs based on simultaneous analysis of multiple characters. The study confirms the merit of conserving the previously proposed golden frog ESUs as well as demonstrates the utility and feasibility of combined analyses of ecological, morphological and genetic variation in evaluating ESUs, especially for highly variable taxa.  相似文献   

7.
Climate-induced phenological shifts can influence population, evolutionary, and ecological dynamics, but our understanding of these phenomena is hampered by a lack of long-term demographic data. We use a multi-decade census of 5 salmonid species representing 14 life histories in a warming Alaskan stream to address the following key questions about climate change and phenology: How consistent are temporal patterns and drivers of phenology for similar species and alternative life histories? Are shifts in phenology associated with changes in phenotypic variation? How do phenological changes influence the availability of resource subsidies? For most salmonid species, life stages, and life histories, freshwater temperature influences migration timing – migration events are occurring earlier in time (mean = 1.7 days earlier per decade over the 3–5 decades), and the number of days over which migration events occur is decreasing (mean = 1.5 days per decade). Temporal trends in migration timing were not correlated with changes in intra-annual phenotypic variation, suggesting that these components of the phenotypic distribution have responded to environmental change independently. Despite commonalities across species and life histories, there was important biocomplexity in the form of disparate shifts in migration timing and variation in the environmental factors influencing migration timing for alternative life history strategies in the same population. Overall, adult populations have been stable during these phenotypic and environmental changes (λ ≈1.0), but the temporal availability of salmon as a resource in freshwater has decreased by nearly 30 days since 1971 due to changes in the median date of migration timing and decreases in intra-annual variation in migration timing. These novel observations advance our understanding of phenological change in response to climate warming, and indicate that climate change has influenced the ecology of salmon populations, which will have important consequences for the numerous species that depend on this resource.  相似文献   

8.
Developmental interactions and the constituents of quantitative variation   总被引:2,自引:0,他引:2  
Development is the process by which genotypes are transformed into phenotypes. Consequently, development determines the relationship between allelic and phenotypic variation in a population and, therefore, the patterns of quantitative genetic variation and covariation of traits. Understanding the developmental basis of quantitative traits may lead to insights into the origin and evolution of quantitative genetic variation, the evolutionary fate of populations, and, more generally, the relationship between development and evolution. Herein, we assume a hierarchical, modular structure of trait development and consider how epigenetic interactions among modules during ontogeny affect patterns of phenotypic and genetic variation. We explore two developmental models, one in which the epigenetic interactions between modules result in additive effects on character expression and a second model in which these epigenetic interactions produce nonadditive effects. Using a phenotype landscape approach, we show how changes in the developmental processes underlying phenotypic expression can alter the magnitude and pattern of quantitative genetic variation. Additive epigenetic effects influence genetic variances and covariances, but allow trait means to evolve independently of the genetic variances and covariances, so that phenotypic evolution can proceed without changing the genetic covariance structure that determines future evolutionary response. Nonadditive epigenetic effects, however, can lead to evolution of genetic variances and covariances as the mean phenotype evolves. Our model suggests that an understanding of multivariate evolution can be considerably enriched by knowledge of the mechanistic basis of character development.  相似文献   

9.
Anthropometric measurements (head length, head breadth, bizygomatic diameter, minimum frontal diameter, head circumference, and stature) for 526 adult Jirels are utilized to establish the pattern of phenotypic relationships between seven villages in eastern Nepal. An analytical framework is provided that justifies the interpretation of biological distances as minimum genetic distances. Using this approach, estimates of the minimum pairwise genetic distances between villages and the minimum FST for the population are derived from the purely phenotypic data. The FST obtained in this way is consistent with results obtained from other data available for this population, confirming the utility of phenetic analysis of quantitative traits for elucidating genetic structure.  相似文献   

10.
Evolutionary change results from selection acting on genetic variation. For migration to be successful, many different aspects of an animal’s physiology and behaviour need to function in a co-coordinated way. Changes in one migratory trait are therefore likely to be accompanied by changes in other migratory and life-history traits. At present, we have some knowledge of the pressures that operate at the various stages of migration, but we know very little about the extent of genetic variation in various aspects of the migratory syndrome. As a consequence, our ability to predict which species is capable of what kind of evolutionary change, and at which rate, is limited. Here, we review how our evolutionary understanding of migration may benefit from taking a quantitative-genetic approach and present a framework for studying the causes of phenotypic variation. We review past research, that has mainly studied single migratory traits in captive birds, and discuss how this work could be extended to study genetic variation in the wild and to account for genetic correlations and correlated selection. In the future, reaction-norm approaches may become very important, as they allow the study of genetic and environmental effects on phenotypic expression within a single framework, as well as of their interactions. We advocate making more use of repeated measurements on single individuals to study the causes of among-individual variation in the wild, as they are easier to obtain than data on relatives and can provide valuable information for identifying and selecting traits. This approach will be particularly informative if it involves systematic testing of individuals under different environmental conditions. We propose extending this research agenda by using optimality models to predict levels of variation and covariation among traits and constraints. This may help us to select traits in which we might expect genetic variation, and to identify the most informative environmental axes. We also recommend an expansion of the passerine model, as this model does not apply to birds, like geese, where cultural transmission of spatio-temporal information is an important determinant of migration patterns and their variation.  相似文献   

11.
The rate change of gene frequency in a population subject to emigration obviously depends on differences in the effective reproductive size (and resulting random genetic drift effects) between emigrants and natives. An important additional force may be the different selection pressures of the original and the new environment into which the population penetrates. Discrete traits and monolocus systems have been studied in many natural populations of various species. However, knowledge about the migration influence on quantitative, i.e. polygenic, characters is very limited. The present study set out to answer the following biological questions: (1) Does migration induce changes in sets of phenotypic, genetic and environmental correlations? (2) If so, are these changes expressed in levels and/or structure of the correlation matrices? Data on 20 anthropometric traits in 305 Mexican families [129 families from Mexico (sedentary population) and 176 families living in Texas (migrant population)] were used for analysis. The curves of distribution and average values of phenotypic, genetic and environmental correlations remained unchanged between the two populations. However, qualitatively (i.e., as far as the agreement between matrix compositions is concerned), all three matrices changed significantly. The phenotypic correlations appear to be the most highly canalized, the correspondence between the two matrices being 62.1%. The environmental matrices had the highest variation, and although 26.3% of the correlations were in agreement, this was statistically nonsignificant. The most important finding in the present study was the relatively low correspondence between the two genetic matrices (35.6%). We suggest that these changes were provoked by preselection (i.e., by a nonrandom sample) of migrating individuals.  相似文献   

12.
Historical and contemporary evolutionary processes can both contribute to patterns of phenotypic variation among populations of a species. Recent studies are revealing how interactions between historical and contemporary processes better explain observed patterns of phenotypic divergence than either process alone. Here, we investigate the roles of evolutionary history and adaptation to current environmental conditions in structuring phenotypic variation among polyphenic populations of sunfish inhabiting 12 postglacial lakes in eastern North America. The pumpkinseed sunfish polyphenism includes sympatric ecomorphs specialized for littoral or pelagic lake habitats. First, we use population genetic methods to test the evolutionary independence of within-lake phenotypic divergences of ecomorphs and to describe patterns of genetic structure among lake populations that clustered into three geographical groupings. We then used multivariate analysis of covariance (MANCOVA) to partition body shape variation (quantified with geometric morphometrics) among the effects of evolutionary history (reflecting phenotypic variation among genetic clusters), the shared phenotypic response of all populations to alternate habitats within lakes (reflecting adaptation to contemporary conditions), and unique phenotypic responses to habitats within lakes nested within genetic clusters. All effects had a significant influence on body form, but the effects of history and the interaction between history and contemporary habitat were larger than contemporary processes in structuring phenotypic variation. This highlights how divergence can be better understood against a known backdrop of evolutionary history.  相似文献   

13.
Animals with determinate growth have shown little variation in individual growth patterns, but similar analyses for animals with indeterminate growth have been lacking. We analysed the amount of phenotypic variation in growth patterns across ages among individuals of a hatchery-based population of Arctic charr, Salvelinus alpinus, Salmonidae, using the infinite-dimensional model and including the effects of group size structure. There was little phenotypic variation in growth trajectories: individuals that were small (in relation to the mean) early in life were among the smallest 2.5 years later. If the genetic variation reflects phenotypic variation, not much evolutionary change can be expected. Our results show that there are ecological conditions that determine the strong covariation of size across ages, most likely size-related dominance behaviour, which can mask the true variation of growth patterns. Thus, social interactions can have strong evolutionary effects on traits not directly involved in the behavioural interactions.  相似文献   

14.
Investigating the extent (or the existence) of local adaptation is crucial to understanding how populations adapt. When experiments or fitness measurements are difficult or impossible to perform in natural populations, genomic techniques allow us to investigate local adaptation through the comparison of allele frequencies and outlier loci along environmental clines. The thick‐billed murre (Uria lomvia) is a highly philopatric colonial arctic seabird that occupies a significant environmental gradient, shows marked phenotypic differences among colonies, and has large effective population sizes. To test whether thick‐billed murres from five colonies along the eastern Canadian Arctic coast show genomic signatures of local adaptation to their breeding grounds, we analyzed geographic variation in genome‐wide markers mapped to a newly assembled thick‐billed murre reference genome. We used outlier analyses to detect loci putatively under selection, and clustering analyses to investigate patterns of differentiation based on 2220 genomewide single nucleotide polymorphisms (SNPs) and 137 outlier SNPs. We found no evidence of population structure among colonies using all loci but found population structure based on outliers only, where birds from the two northernmost colonies (Minarets and Prince Leopold) grouped with birds from the southernmost colony (Gannet), and birds from Coats and Akpatok were distinct from all other colonies. Although results from our analyses did not support local adaptation along the latitudinal cline of breeding colonies, outlier loci grouped birds from different colonies according to their non‐breeding distributions, suggesting that outliers may be informative about adaptation and/or demographic connectivity associated with their migration patterns or nonbreeding grounds.  相似文献   

15.
DNA copy number variation (CNV) represents a considerable source of human genetic diversity. Recently,1 a global map of copy number variation in the human genome has been drawn up which reveals not only the ubiquity but also the complexity of this type of variation. Thus, two human genomes may differ by more than 20 Mb and it is likely that the full extent of CNV still remains to be discovered. Nearly 3000 genes are associated with CNV. This high degree of variability with regard to gene copy number between two individuals challenges definitions of normality. Many CNVs are located in regions of complex genomic structure and this currently limits the extent to which these variants can be genotyped by using tagging SNPs. However, some CNVs are already amenable to genome-wide association studies so that their influence on human phenotypic diversity and disease susceptibility may soon be determined.  相似文献   

16.
In the human species, the two uniparental genetic systems (mitochondrial DNA and Y chromosome) exhibit contrasting diversity patterns. It has been proposed that sex-specific behaviours, and in particular differences in migration rate between men and women, may explain these differences. The availability of high-density genomic data and the comparison of genetic patterns on autosomal and sex chromosomes at global and local scales allow a reassessment of the extent to which sex-specific behaviours shape our genome. In this article, we first review studies comparing the genetic patterns at uniparental and biparental genetic systems and assess the extent to which sex-specific migration processes explain the differences between these genetic systems. We show that differences between male and female migration rates matter, but that they are certainly not the only contributing factor. In particular, differences in effective population size between men and women are also likely to account for these differences. Then, we present and discuss three anthropological processes that may explain sex-specific differences in effective population size and thus human genomic variation: (i) variance in reproductive success arising from, for example, polygyny; (ii) descent rules; and (iii) transmission of reproductive success.  相似文献   

17.
There has been a large focus on the genetics of traits involved in adaptation, but knowledge of the environmental variables leading to adaptive changes is surprisingly poor. Combined use of environmental data with morphological and genomic data should allow us to understand the extent to which patterns of phenotypic and genetic diversity within a species can be explained by the structure of the environment. Here, we analyse the variation of populations of three‐spined stickleback from 27 freshwater lakes on North Uist, Scotland, that vary greatly in their environment, to understand how environmental and genetic constraints contribute to phenotypic divergence. We collected 35 individuals per population and 30 abiotic and biotic environmental parameters to characterize variation across lakes and analyse phenotype–environment associations. Additionally, we used RAD sequencing to estimate the genetic relationships among a subset of these populations. We found a large amount of phenotypic variation among populations, most prominently in armour and spine traits. Despite large variation in the abiotic environment, namely in ion composition, depth and dissolved organic Carbon, more phenotypic variation was explained by the biotic variables (presence of predators and density of predator and competitors), than by associated abiotic variables. Genetic structure among populations was partly geographic, with closer populations being more similar. Altogether, our results suggest that differences in body shape among stickleback populations are the result of both canalized genetic and plastic responses to environmental factors, which shape fish morphology in a predictable direction regardless of their genetic starting point.  相似文献   

18.
Recently spatial autocorrelation has been employed to infer microevolutionary processes from patterns of genetic variation. In theory, different processes should show characteristic signature correlograms; e. g., clinal selection should produce correlograms decreasing from positive to negative autocorrelation, whereas uniform balanced selection should lead to no spatial autocorrelation. The ability of a statistical method such as spatial autocorrelation analysis to distinguish between these selective regimes or even to detect departures from neutrality is dependent on the strength of the evolutionary force and the population structure. Weak selection or migration will not be apparent against the expected background of stochastic noise. Moreover, the population structure may generate sufficient stochastic variation such that even strong evolutionary forces may fail to be detected. This study uses computer simulation to examine the effects of kin-structured migration and three different selective regimes on the shape of spatial correlograms to assess the ability of this technique to detect different microevolutionary processes. Genetic variation among 8 loci is simulated in a linear set of 25 artificial populations. Kin-structured stepping-stone migration among adjacent populations is modeled; directional, balanced, and clinal selection, as well as neutral loci are considered. These experiments show that strong selection produces correlograms of the predicted shape. However, with an anthropologically reasonable population structure, considerable stochastic variation among correlograms for different alleles may still exist. This suggests the need for caution in inferring genetic process from spatial patterns. © 1994 Wiley-Liss, Inc.  相似文献   

19.
Abstract: Cause for spatial variation in phenotypic quality of white-tailed deer (Odocoileus virginianus) populations is of great interest to wildlife managers. Relating phenotypic variation of populations to large-scale land-use patterns may provide insight into why populations exhibit spatial variation and elucidate how management can influence population phenotype. We used an information-theoretic approach to relate average antler size of 203 deer populations to composition and structure of the habitat occupied by those populations. We used interspersion, edge, and diversity indices to represent habitat structure and percentage of area in vegetation types to represent habitat composition. Landscape composition was a better predictor of deer population antler size than was landscape structure. Percentages of the management unit in agriculture, pasture, and pine forest were variables commonly found in the region-specific set of best models. Model-averaged estimates of agriculture and pasture parameters were always positive and estimates of pine forest parameters were always negative, which suggests that land-use types that promote growth of early successional herbaceous plants will positively influence antler size and, most likely, body growth and reproduction of white-tailed deer populations. Conversely, our findings suggest landscapes dominated by pine forests did not provide optimal amounts of quality forages for white-tailed deer. Pine forest effects should be mitigated using a combination of increased harvest to lower deer density and silvicultural practices like thinning, prescribed burning, and selective herbicide applications that stimulate growth of high-quality forages beneath the forest canopy to improve deer phenotypic quality.  相似文献   

20.
Mating between relatives generally results in reduced offspring viability or quality, suggesting that selection should favor behaviors that minimize inbreeding. However, in natural populations where searching is costly or variation among potential mates is limited, inbreeding is often common and may have important consequences for both offspring fitness and phenotypic variation. In particular, offspring morphological variation often increases with greater parental relatedness, yet the source of this variation, and thus its evolutionary significance, are poorly understood. One proposed explanation is that inbreeding influences a developing organism’s sensitivity to its environment and therefore the increased phenotypic variation observed in inbred progeny is due to greater inputs from environmental and maternal sources. Alternatively, changes in phenotypic variation with inbreeding may be due to additive genetic effects alone when heterozygotes are phenotypically intermediate to homozygotes, or effects of inbreeding depression on condition, which can itself affect sensitivity to environmental variation. Here we examine the effect of parental relatedness (as inferred from neutral genetic markers) on heritable and nonheritable components of developmental variation in a wild bird population in which mate choice is often constrained, thereby leading to inbreeding. We found greater morphological variation and distinct contributions of variance components in offspring from highly related parents: inbred offspring tended to have greater environmental and lesser additive genetic variance compared to outbred progeny. The magnitude of this difference was greatest in late-maturing traits, implicating the accumulation of environmental variation as the underlying mechanism. Further, parental relatedness influenced the effect of an important maternal trait (egg size) on offspring development. These results support the hypothesis that inbreeding leads to greater sensitivity of development to environmental variation and maternal effects, suggesting that the evolutionary response to selection will depend strongly on mate choice patterns and population structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号