首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: A growth analysis was conducted with 24 central European grass species in full daylight to test whether traits underlying interspecific variation in relative growth rate (RGR) are the same in full daylight as they are at lower light, and whether this depends on the ecological characteristics of the studied species, i.e., their requirements with respect to nutrient and light availability.
In contrast to studies with herbaceous species at lower light, net assimilation rate (NAR) contributed more than leaf area ratio (LAR) or specific leaf area (SLA) to interspecific variation in RGR. This was associated with a larger interspecific variation in NAR than found in experiments with lower light. Without the two most shade-tolerant species, however, the contribution of LAR and its components to interspecific variation in RGR was similar or even higher than that of NAR.
Leaf dry matter content correlated negatively with RGR and was the only component of LAR contributing in a similar manner to variation in LAR and RGR. There was a positive correlation between NAR and biomass allocation to roots, which may be a result of nutrient-limited growth. RGR correlated negatively with biomass allocation to leaves. Leaf thickness did not correlate with RGR, as the positive effect of thin leaves was counterbalanced by their lower NAR.
Low inherent RGR was associated with species from nutrient-poor or shady habitats. Different components constrained growth for these two groups of species, those from nutrient-poor habitats having high leaf dry matter content, while those from shady habitats had thin leaves with low NAR.  相似文献   

2.
The present study shows that the relative contributions of leaf area ratio (LAR) and net assimilation rate (NAR) to variation among species in relative growth rate (RGR) depend on growth temperature. We grew three subantarctic and three alpine Poa species at daytime temperatures of 7, 12 and 17 degrees C, and analysed interspecific and temperature-related variation in RGRs by growth analysis. Variation in NAR accounted for most of the interspecific differences in RGR at low growth temperature, whereas variation in both NAR and LAR contributed strongly to interspecific differences in RGR at high growth temperature. For most species, the increase in RGR from 7 to 12 degrees C was attributable to an increase in LAR, whereas the increase in RGR from 12 to 17 degrees C was attributable to an increase in NAR. There were no differences between native subantarctic and alpine species in the plasticity of growth responses to temperature. However, Poa annua, a species introduced to the subantarctic, showed much greater growth plasticity than other species. There was little difference among species in tolerance of high-temperature extremes.  相似文献   

3.
The growth, morphology and biomass allocation of 11 liana species (six light-demanding and five shade-tolerant) were investigated by growing plants in three contrasting light environments (i.e., field, forest edge and forest interior). Our objectives were to determine: (1) changes in plant traits at the species level; and (2) differences in light-demanding and shade-tolerant species in response to altered light environment. We found that all seedlings of liana species increased in total biomass, total leaf area, relative growth rate (RGR), net assimilation rate (NAR), height, basal diameter, root length, leaf number, root mass/total plant mass (RMR) and root-to-shoot dry biomass (R/S ratio), and decreased in leaf area ratio (LAR), specific leaf area (SLA), leaf size, stem mass-to-total plant mass ratio (SMR) and leaf mass-to-total plant mass ratio (LMR) with increasing light availability. Under the three light environments, the two types of species differed significantly in total biomass, total leaf area, RGR, NAR, LAR, SLA and leaf number, and not in leaf area. Only light-demanding species differed significantly in height, root length, basal diameter, RMR, SMR, LMR and R/S ratio. The mean plasticity index of growth and biomass allocation were relatively higher than the morphological variables, with significant differences between the two groups. Our results showed that liana species respond differently to changing light environments and that light-demanding species exhibit higher plasticity. Such differences may affect the relative success of liana species in forest dynamics.  相似文献   

4.
The role of blue light in plant growth and development was investigated in soybean (Glycine max [L.] Merr. cv Williams) and sorghum (Sorghum bicolor [L.] Moench. cv Rio) grown under equal photosynthetic photon fluxes (approximately 500 micromoles per square meter per second) from broad spectrum daylight fluorescent or blue-deficient, narrow-band (589 nanometers) low pressure sodium (LPS) lamps. Between 14 and 18 days after sowing, it was possible to relate adaptations in photosynthesis and leaf growth to dry matter accumulation. Soybean development under LPS light was similar in several respects to that of shaded plants, consistent with an important role for blue light photoreceptors in regulation of growth response to irradiance. Thus, soybeans from LPS conditions partitioned relatively more growth to leaves and maintained higher average leaf area ratios (mean LAR) that compensated lower net assimilation rates (mean NAR). Relative growth rates were therefore comparable to plants from daylight fluorescent lamps. Reductions in mean NAR were matched by lower rates of net photosynthesis (A) on an area basis in the major photosynthetic source (first trifoliolate) leaf. Lower A in soybean resulted from reduced leaf dry matter per unit leaf area, but lower A under LPS conditions in sorghum correlated with leaf chlorosis and reduced total nitrogen (not observed in soybean). In spite of a lower A, mean NAR was larger in sorghum from LPS conditions, resulting in significantly greater relative growth rates (mean LAR was approximately equal for both light conditions). Leaf starch accumulation rate was higher for both species and starch content at the end of the dark period was elevated two- and three-fold for sorghum and soybean, respectively, under LPS conditions. Possible relations between starch accumulation, leaf export, and plant growth in response to spectral quality were considered.  相似文献   

5.
Growth rates are of fundamental importance for plants, as individual size affects myriad ecological processes. We determined the factors that generate variation in RGR among 14 species of trees and shrubs that are abundant in subtropical Chinese forests. We grew seedlings for two years at four light levels in a shade-house experiment. We monitored the growth of every juvenile plant every two weeks. After one and two years, we destructively harvested individuals and measured their functional traits and gas-exchange rates. After calculating individual biomass trajectories, we estimated relative growth rates using nonlinear growth functions. We decomposed the variance in log(RGR) to evaluate the relationships of RGR with its components: specific leaf area (SLA), net assimilation rate (NAR) and leaf mass ratio (LMR). We found that variation in NAR was the primary determinant of variation in RGR at all light levels, whereas SLA and LMR made smaller contributions. Furthermore, NAR was strongly and positively associated with area-based photosynthetic rate and leaf nitrogen content. Photosynthetic rate and leaf nitrogen concentration can, therefore, be good predictors of growth in woody species.  相似文献   

6.
The life span of resource-acquiring organs (leaves, shoots, fine roots) is closely associated with species successional position and environmental resource availability. We examined to what extent leaf life span is related to inter- and intraspecific variation in seedling relative growth rate (RGR). We examined relationships between relative growth rate in mass (RGRM) or height (RGRH) and leaf life span, together with classical RGRM components [net assimilation rate (NAR), specific leaf area (SLA), leaf weight ratio (LWR), and leaf area ratio (LAR)] for seedlings of five hardwood species of different successional position across a wide range of environmental resource availability, including the presence or absence of leaf litter in shaded forest understory, small canopy gaps, and large canopy gaps. Both SLA and LAR were negatively correlated with RGRM along the environmental gradient for all species. However, positive correlations were observed among species within microsites, indicating that these two components cannot consistently explain the variation in RGRM. Both NAR and LWR affect interspecific, but not intraspecific, variation in RGRM. Leaf life span was negatively correlated with either RGRM or RGRH in both inter- and intraspecific comparisons. Species with short-lived, physiologically active leaves have high growth rates, particularly in resource-rich environments. Consequently, leaf life span is a good predictor of seedling RGR. Leaf life span affects plant performance and has a strong and consistent effect on tree seedling growth, even among contrasting environments.  相似文献   

7.
Leaf size and leaf display of thirty-eight tropical tree species   总被引:1,自引:0,他引:1  
Poorter L  Rozendaal DM 《Oecologia》2008,158(1):35-46
Trees forage for light through optimal leaf display. Effective leaf display is determined by metamer traits (i.e., the internode, petiole, and corresponding leaf), and thus these traits strongly co-determine carbon gain and as a result competitive advantage in a light-limited environment. We examined 11 metamer traits of sun and shade trees of 38 coexisting moist forest tree species and determined the relative strengths of intra- and interspecific variation. Species-specific metamer traits were related to two variables that represent important life history variation; the regeneration light requirements and average leaf size of the species. Metamer traits varied strongly across species and, in contrast to our expectation, showed only modest changes in response to light. Intra- and interspecific responses to light were only congruent for a third of the traits evaluated. Four traits, amongst which leaf size, specific leaf area (SLA), and leaf area ratio at the metamer level (LAR) showed even opposite intra- and interspecific responses to light. Strikingly, these are classic traits that are thought to be of paramount importance for plant performance but that have completely different consequences within and across species. Sun trees of a given species had small leaves to reduce the heat load, but light-demanding species had large leaves compared to shade-tolerants, probably to outcompete their neighbors. Shade trees of a given species had a high SLA and LAR to capture more light in a light-limited environment, whereas shade-tolerant species have well-protected leaves with a low SLA compared to light-demanding species, probably to deter herbivores and enhance leaf lifespan. There was a leaf-size-mediated trade-off between biomechanical and hydraulic safety, and the efficiency with which species can space their leaves and forage for light. Unexpectedly, metamer traits were more closely linked to leaf size than to regeneration light requirements, probably because leaf-size-related biomechanical and vascular constraints limit the trait combinations that are physically possible. This suggests that the leaf size spectrum overrules more subtle variation caused by the leaf economics spectrum, and that leaf size represents a more important strategy axis than previously thought. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
A dominant hypothesis explaining tree species coexistence in tropical forest is that trade-offs in characters allow species to adapt to different light environments, but tests for this hypothesis are scarce. This study is the first that uses a theoretical plant growth model to link leaf trade-offs to whole-plant performances and to differential performances across species in different light environments. Using data of 50 sympatric tree species from a Bolivian rain forest, we observed that specific leaf area and photosynthetic capacity codetermined interspecific height growth variation in a forest gap; that leaf survival rate determined the variation in plant survival rate under a closed canopy; that predicted height growth and plant survival rate matched field observations; and that fast-growing species had low survival rates for both field and predicted values. These results show how leaf trade-offs influence differential tree performance and tree species' coexistence in a heterogeneous light environment.  相似文献   

9.
Poorter L  Rose SA 《Oecologia》2005,142(3):378-387
Seed mass is considered to be an important attribute for the establishment success of plant species being linked with their seed production, establishment, and survival. This meta-analysis shows that seed mass is also closely correlated to growth-related species attributes of the established phase of rain forest tree species, and that the strength of this relationship varies with light conditions. Seed mass is an especially good predictor of species traits under high-light conditions, when the species attain their full growth potential. At high irradiance (>20% of full light) seed mass is negatively correlated with RGR, NAR, LAR, SLA and LMF. At low irradiance (<5% of full light), seed mass is only negatively correlated with LAR and SLA. Correlations between seed mass and morphological traits are therefore strongest at low irradiance where light interception is important. Conversely, correlations between seed mass and a physiological trait are strongest at high irradiance, where maximisation of photosynthetic rates is important. The strength of the correlation between growth parameters and seed mass declines over time, and disappears after 1–4 years. Seed mass appears to be a good proxy for the shade tolerance of tropical tree species, especially at the younger stages of the life cycle.  相似文献   

10.
Storkey J 《Annals of botany》2004,93(6):681-689
BACKGROUND AND AIMS: The early growth rate of seedlings in the exponential phase is an important eco- physiological trait in crop/weed competition models based on assessments of relative weed green area. An understanding of the role of various plant traits in determining early growth rate may also be useful for identifying contrasting weed strategies for establishment before canopy closure. METHODS: The response of seedling relative growth rate (RGR) to the environment was measured in outdoor sand beds in the autumn and the spring for 18 temperate annual weed species and two crops. Seedling growth was modelled using thermal time and effective day-degrees (combining the effect of temperature and radiation). The contribution of various plant traits in determining variability in RGR was investigated using regression analysis. KEY RESULTS: The effective day-degree model was more effective for describing early weed growth than thermal time. Variability in RGR measured in the autumn was largely determined by differences between the species in net assimilation rate (NAR), whereas in the spring leaf area ratio (LAR) played a larger part. There were differences between the broadleaf and grass species in the relative contribution of NAR and LAR to RGR in both seasons. RGR in the spring was negatively correlated with initial seedling size. CONCLUSIONS: The parameters derived in this study can be used to calibrate empirical models of crop yield loss based on relative weed green area to different growing seasons and assessment dates. The grass weeds, which tended to have large seeds, had a higher investment in roots in the seedling stage, potentially making them more competitive later in the season when resources become limiting.  相似文献   

11.
Abstract

Relative growth rate (RGR) is a fundamental trait for comparative plant ecology but cannot be measured in situ, leading to problems in interpreting vegetation function. However, the components of RGR (net assimilation rate (NAR), leaf area ratio (LAR), leaf weight ratio (LWR), and specific leaf area (SLA)) can be calculated for wild plants from morphological measurements (leaf area, leaf dry mass, whole plant dry mass), which potentially reflect RGR. Seeds of 19 species from Italian prealpine calcareous grasslands were collected and seedlings were cultivated under controlled conditions. RGR, NAR, LAR, LWR and SLA were analysed. The results demonstrated that RGR was positively correlated with SLA and LAR (p < 0.01). Furthermore, LAR was positively correlated with LWR and negatively with NAR (p < 0.05). Monocotyledons showed significantly higher LAR, LWR and NAR than dicotyledons, as the latter allocated a greater proportion of biomass to stems, but RGR and SLA showed no such phylogenetic constraint. Therefore SLA is the most reliable indicator of RGR in ecological and functional surveys of prealpine calcareous grasslands, and has the additional advantage that it can be measured from leaf material alone. Lower mean RGR and SLA for calcareous grassland species suggests that this vegetation is less likely to recover from the effects of disturbance than meadows and dry meadows.  相似文献   

12.
Long W  Zang R  Schamp BS  Ding Y 《Oecologia》2011,167(4):1103-1113
Specific leaf area (SLA) is a key functional trait reflecting the trade-off between resource capture and conservation, and has been identified as playing an important role in plant community assembly. Mechanistic models of community assembly state that the assemblage of species in a local community is controlled by environment filters operating on functional traits. We measured within- and among-species variation of SLA, and environmental conditions in a tropical cloud forest to explore how variation in this functional trait contributes to community assembly. SLA variation at the species level was also decomposed into alpha (within assemblage variation), and beta (across assemblage variation) values. SLA decreased with increasing solar irradiance (approximated using plant height) within the three study sites, and differed among the three sites both for within- and among-species comparisons. Mean plot SLA, accounting for both within and among species across the three sites, increased significantly in relation to air temperature but not local photosynthetic photon flux density and soil total phosphorus. Alpha SLA decreased with increasing solar irradiance within the three sites and beta SLA differed among the three sites. Our results clearly demonstrate that light and air temperature are key environmental factors involved in organizing plant species within and among communities in tropical cloud forests. The strong relationship between both intra- and interspecific variation in SLA and environmental conditions strongly confirms the role of trait variation in the assembly of plant species in tropical cloud forest communities via environment filtering related to light availability and air temperature.  相似文献   

13.
林窗是森林更新演替的重要环节, 揭示林窗环境下功能性状变异来源及其相对贡献, 有助于阐明植物对林窗环境的响应。该研究以中亚热带格氏栲(Castanopsis kawakamii)天然林为对象, 设置9个不同大小的林窗样地, 运用方差分解探讨林窗、物种和个体对叶性状变异的相对贡献, 采用线性回归分析不同大小林窗下群落性状变化及种间和种内性状变异的重要性。研究发现: (1)格氏栲天然林林窗植物比叶面积、叶干物质含量、叶厚和叶绿素含量由种间性状变异主导, 叶氮含量由种内性状变异主导, 叶磷含量受林窗大小影响最大。(2)群落叶磷含量与林窗大小具有显著正相关关系, 土壤温度和水解氮含量对群落叶磷含量具有显著正效应, 土壤有效磷含量具有显著负效应。(3)沿林冠开放度的群落叶磷含量变化主要由种内性状变异引起, 优势种扮演着重要角色。结果表明, 格氏栲天然林林窗环境下植物功能性状仍以种间性状变异为主(平均41%), 但沿林窗环境梯度的群落性状变化主要源自种内性状变异, 通过植物表型可塑性响应环境改变, 优势种作用明显。  相似文献   

14.
 比较研究了不同光强下生长的(透光率分别为12.5%、36%、50%、100%)两种入侵性不同的外来种——紫茎泽兰(Eupatorium adenophorum)和兰花菊三七(Gynura sp.)的生物量分配、叶片形态和生长特性。结果表明: 1)两种植物叶片形态对光环境的反应相似。弱光下比叶面积(SLA)、平均单叶面积(MLS)和叶面积比(LAR)较大,随着光强的升高,SLA、MLS、LAR和叶根比(LARMR)降低。2)100%光强下紫茎泽兰叶生物量比(LMR)、叶重分数(LMF)和叶面积指数高于低光强下的值,也高于兰花菊三七,支持结构生物量比(SBR)则相反。强光下紫茎泽兰叶片自遮荫严重,这可能是其表现入侵性的重要原因之一;兰花菊三七分枝较多,避免了叶片自遮荫,较多的分枝利于种子形成对其入侵有利。3)随生长环境光强的升高,两种植物的净同化速率(NAR)、相对生长速率(RGR)和生长对NAR的响应系数均升高(但100%光强下兰花菊三七RGR降低),平均叶面积比(LARm)和生长对LARm的响应系数均降低,但不同光强下LARm对生长的影响始终大于NAR。4)随着光强的减弱,两种植物都增加高度以截获更多光能,但它们的生物量分配策略不同,紫茎泽兰根生物量比(RMR)降低,SBR增大,而兰花菊三七SBR降低,RMR增大。紫茎泽兰的生物量分配策略更好的反应了弱光环境中的资源变化情况。结论:紫茎泽兰对光环境的适应能力强于兰花菊三七。  相似文献   

15.
WILSON  D.; COOPER  J. P. 《Annals of botany》1969,33(5):951-965
Using growth-analysis techniques, the variation in relativegrowth-rate (RGR) and its components, net assimilation rate(NAR), and leaf-area ratio (LAR), was examined in 18 populationsof L. perenne, six of L. multiflorum, and two hybrid cultivarsfrom contrasting climatic and agronomic origins, grown at lowand high light intensities in the glasshouse. Significant differences between populations were found for RGR,NAR, and LAR at both light intensities. At both intensitiesthe annual or biennial multiflorum group had a greater LAR anda lower specific leaf weight and chlorophyll content than theperennial perenne group. At the low intensity this was compensatedby a greater NAR in the perenne group, with no resultant differencein RGR. At the high intensity there was no difference betweenthe groups in NAR, and hence a greater RGR in the multiflorumgroup. Within the perenne and multiflorum groups, at both light intensities,the variation between populations in RGR was based on differencesin NAR rather than in LAR. There was no regular correlationof NAR with either specific leaf weight, or chlorophyll contentat either light intensity, though at low light intensity itwas significantly correlated with shoot-root ratio.  相似文献   

16.
  • Forest understorey plants are sensitive to light availability, and different species groups can respond differently to changing light conditions. A plant trait tightly linked to light capture is specific leaf area (SLA). Studies considering the relative role of within‐ and among‐species SLA variation across different species groups (e.g. specialists and generalists) are rarely implemented in temperate forest understories varying in their maturity.
  • We examined community‐level SLA patterns of beech forest understories along a light availability gradient, and for habitat specialists and generalists separately. We then disentangled and quantified the contribution of intraspecific trait variability and interspecific trait differences in shaping SLA patterns.
  • We revealed that the increase in community‐level SLA with decreasing light availability was primarily driven by beech forest specialists (and, to a lesser extent, by forest generalists), and this pattern was mainly determined by specialists’ high intraspecific variability. Community‐level SLA was therefore formed by different responses at different organizational levels, i.e. within and among species, and for separate species groups.
  • This study provides insights into factors shaping the shade tolerance strategy in beech forest understorey plants; specialists persistence under putative less favourable conditions (i.e. high irradiation) may be fostered by their ability to adjust their light capture strategies intraspecifically.
  相似文献   

17.
Abstract

Preliminary observations on the ecology of sessile oak (Quercus petraea (Matt.) Liebl.) seedlings.—The responses of sessile oak seedlings to four different light intensities and to increasing drought (three soil moisture contents) have been investigated in a nursery experiment in order to improve the knowledge of the ecology of this species in the Mediterranean area. Data have been compared with observations on natural regeneration established in different shade and soil moisture conditions in a sessile oak stand. The results of the two experiments showed that low light intensities (transmittance <5%) did not limit the seedlings establishment but induced lowest growth rates, while in full daylight seedlings mortality was very high (61%). In accordance with the observations in natural conditions, seedlings showed the best performances at intermediate light levels (50–80% of full daylight) and with increasing soil moisture: mortality was very low and average height increment, dry weight, relative growth rate (RGR) and net assimilation rate (NAR) showed the highest values. The differences in specific leaf area (SLA), leaf area ratio (LAR), root/stem ratio enabled to discuss the sessile oak seedlings ecology and adaptations to different light intensities and soil moisture content.  相似文献   

18.
We studied the effects of phosphorus (P) and light on the physiological and morphological components of growth of young tomato plants (Lycopersicon esculentum Mill. cv. Capita). The importance of dry‐mass partitioning and starch accumulation in explaining the effects of P limitation on growth was examined more closely. Plants were grown at a wide range of exponential P supply rates (between 70 and 320 mg g?1 d?1) and one free‐access treatment (1 mm ). Two light levels (70 and 300 µmol m?2 s?1) were applied. Growth response coefficients (GRCs) were calculated to address the importance of different growth parameters in explaining relative growth rate (RGR). At both light levels, net assimilation rate (NAR) was more important than leaf area ratio (LAR) in explaining the effects of P on growth as indicated by GRCs. At less severe P limitation, LAR became more important and NAR less important. Dry‐mass partitioning to both roots and leaves played a minor role in determining the effects of P limitation on growth as indicated by low GRCs. The increase in starch at mild P limitation showed that the assimilate supply was not limiting. At severe P limitation, the rate of photosynthesis was decreased, as suggested by the decrease in starch accumulation.  相似文献   

19.
To investigate factors determining the differences in their salt tolerance, growth and germination, experiments were conducted on two plant species belonging to genus Artemisia: Artemisia fukudo Makino, a biennial salt marsh plant and Artemisia stelleriana Bess, a perennial coastal hind dune plant. Growth experiments revealed that salinity (100 and 300 m m NaCl) inhibited the relative growth rate (RGR) in A. stelleriana significantly but not in A. fukudo. These specific differences in salt tolerance were mainly attributed to differential responses of net assimilation rate (NAR). That is, the reduction in RGR in A. stelleriana was mainly due to the reduction in NAR, whereas no significant reduction in NAR was observed in A. fukudo. The reduction in RGR in A. stelleriana in the salt treatment was also attributable to a reduced leaf area ratio (LAR). Specific leaf area (SLA) in the two species decreased in the 300 m m treatment. The decrease in SLA in A. fukudo was, however, compensated for partly by an increase in leaf weight ratio (LWR). Germination experiments also showed that A. fukudo has a higher salt tolerance than does A. stelleriana. These results are consistent with the differences in the salinity conditions between the native habitats of the two species.  相似文献   

20.
Summary The hypothesis was tested that faster growth of nitrophilic plants at high nitrogen (N) nutrition is counterbalanced by faster growth of non-nitrophilic plants at low N-nutrition. Ten annual plant species were used which originated from habitats of different N-availability. The species' preference for N was quantified by the N-number of Ellenberg (1979), a relative measure of nitrophily. The plants were cultivated in a growth cabinet at five levels of ammonium-nitrate supply. At low N-supply, the relative growth rate (RGR) was independent of nitrophily. At high N-supply, RGR tended to be higher in nitrophilic than in non-nitrophilic species. However, the response of RGR to N-supply was strongly and positively correlated with the nitrophily of species. Increasing N-supply enhanced partitioning to leaf weight per total biomass (LWR) and increased plant leaf area per total biomass (LAR). Specific leaf weight (SLW) and LWR were both higher in non-nitrophilic than in nitrophilic species at all levels of N-nutrition. NAR (growth per leaf area or net assimilation rate) increased with nitrophily only under conditions of high N-supply. RGR correlated positively with LAR, irrespective of N-nutrition. Under conditions of high N-supply RGR correlated with SLW negatively and with NAR positively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号