首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NADP-linked malic enzyme [EC 1.1.1.40] was highly purified from Escherichia coli W cells. The purified enzyme was homogeneous as judged by ultracentrifugation and gel electrophoresis. The apparent molecular weights obtained by sedimentation equilibrium analysis, from diffusion and sedimentation constants, and by disc electrophoresis at various gel concentrations were 471,000, 438,000, and 495,000, respectively. The subunit molecular weights obtained by sedimentation equilibrium analysis in the presence of 6 M guanidine hydrochloride and gel electrophoresis in the presence of sodium dodecyl sulfate were 76,000 and 82,000, respectively. The sedimentation coefficient (S(0)20, W) was 13.8S, and the molecular activity was 44,700 min-1 at 30 degrees C. The amino acid composition of the enzyme was determined, and the results were compared with those of NAD-linked malic enzyme from the same organism and those of pigeon liver NADP-linked malic enzyme. The partial specific volume was calculated to be 0.738 ml/g. The Km value for L-malate was 2.3 mM at pH 7.4. Malonate, tartronate, glutarate, and DL-tartrate competitively inhibited the activity. The saturation profile for L-malate exhibited a marked cooperativity in the presence of both chloride ions and acetyl-CoA. However, acetyl-CoA alone did not show cooperativity or produce inhibition in the absence of chloride ions. Vmax and Km were determined as a function of pH. The optimum pH for the reaction was 7.8. Inspection of the Dixon plots suggested that three ionizable groups of the enzyme are essential for the enzyme activity. In addition to the oxidative decarboxylase activity, the enzyme preparation exhibited divalent metal ion-dependent oxaloacetate decarboxylase and alpha-keto acid reductase activities. Based on the above results, the molecular properties of the enzymatic reaction are discussed.  相似文献   

2.
3.
4.
Two forms of NADP-dependent malic enzyme in expanding maize leaves   总被引:1,自引:0,他引:1  
Paolo Pupillo  Patrizia Bossi 《Planta》1979,144(3):283-289
Etiolated maize leaves (Zea mays L.) contain a major isozyme of NADP-dependent malic enzyme (L-malate dehydrogenase, decarboxylating, EC 1.1.1.40) having an isoelectric point of 5.28±0.03, a Km (L-malate) 0.3–0.6 mM at pH 7.45; a broad pH optimum around pH 6.9 under the conditions of assay; a molecular weight of 280,000 (sometimes accompanied by a minor component of 150,000); and an NAD-dependent activity about 1/50 the NADP-dependent activity. This isozyme, resembling the NADP-malic enzyme of vertebrates, is labeled type 1. The dominant isozyme of young green leaves (type 2) has, however, a pI 4.90±0.03, a Km (L-malate) 0.10–0.15 mM, a pH optimum of 8, and a molecular weight of 280,000. It is also more stable and exhibits an appreciable NAD-dependent activity (1/5–1/7 the NADP activity). Both isozymes show linear kinetics, dependence on Mn or Mg ions, similar Km (NADP+), and the typical increase of Km for L-malate with increasing pH values. Type 1 isozyme of maize is assumed to be cytosolic. Type 2 corresponds in each property to the chloroplast enzyme of bundle-sheath cells. It is present at a low level in etiolated leaves and develops to a high specific activity (up to 100 nmol min-1 mg protein-1 by 150 h illumination) during photosynthetic differentiation, replacing the type 1 form.Abbreviation MES 2 (N-morpholino)ethane sulfonic acid Work supported by grants from the Consiglio Nazionale delle Ricerche for years 1975 and 1976  相似文献   

5.
Light-stimulated synthesis of NADP malic enzyme in leaves of maize   总被引:4,自引:0,他引:4  
Illumination of etiolated maize plants for 80 h brings about a 15-20-fold increase in activity of NADP malic enzyme (EC 1.1.1.40). Increases in NADP malic enzyme protein and in the level of translatable mRNA for this protein occur simultaneously with the activity increase. Radiolabeled amino acids are also incorporated into NADP malic enzyme during this time. These results are consistent with the conclusion that an increase in NADP malic enzyme activity during greening results from de novo synthesis of NADP malic enzyme protein. Polyadenylated RNA extracted from greening maize leaves directs the synthesis in vitro of a protein 12,000 daltons larger than NADP malic enzyme purified from corn leaves. This protein is a precursor of NADP malic enzyme because 1) both the precursor and mature NADP malic enzyme are immunoprecipitated by antibody made against NADP malic enzyme purified from corn leaves, 2) both NADP malic enzyme protein and the level of mRNA for the precursor increase during greening, and 3) peptide maps of the precursor and of mature NADP malic enzyme are very similar. Mature NADP malic enzyme and its precursor (synthesized in vitro) both migrate on sodium dodecyl sulfate-polyacrylamide gradient gels as doublet bands. Peptide analyses show all bands to be structurally related.  相似文献   

6.
7.
Malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+) EC 1.1.1.40, malic enzyme, has been purified 40-fold to a homogeneous state using affinity chromatography and gel permeation chromatography. The Mr is 260–265 K with four subunits each of 64–65 K. The enzyme has some competitive or non-competitive inhibitors, particularly some of the Krebs cycle acids and exhibits a rapid rise in activity at the same time as activity of the enzymes of the Krebs cycle are decreasing in the tomato mitochrondrion. The malic enzyme is restricted to the cytosol. The relevance of this information to malate metabolism in plants is discussed.  相似文献   

8.
Structural analogues of the NADP+ were studied as potential coenzymes and inhibitors for NADP+ dependent malic enzyme from Zea mays L. leaves. Results showed that 1, N6-etheno-nicotinamide adenine dinucleotide phosphate ( NADP+), 3-acetylpyridine-adenine dinucleotide phosphate (APADP+), nicotinamide-hypoxanthine dinucleotide phosphate (NHDP+) and -nicotinamide adenine dinucleotide 2: 3-cyclic monophosphate (23NADPc+) act as alternate coenzymes for the enzyme and that there is little variation in the values of the Michaelis constants and only a threefold variation in Vmax for the five nucleotides. On the other hand, thionicotinamide-adenine dinucleotide phosphate (SNADP+), 3-aminopyridine-adenine dinucleotide phosphate (AADP+), adenosine 2-monophosphate (2AMP) and adenosine 2: 3-cyclic monophosphate (23AMPc) were competitive inhibitors with respect to NADP+, while -nicotinamide adenine dinucleotide 3-phosphate (3NADP+), NAD+, adenosine 3-monophosphate (3AMP), adenosine 2: 5-cyclic monophosphate (25AMPc), 5AMP, 5ADP, 5ATP and adenosine act as non-competitive inhibitors. These results, together with results of semiempirical self-consistent field-molecular orbitals calculations, suggest that the 2-phosphate group is crucial for the nucleotide binding to the enzyme, whereas the charge density on the C4 atom of the pyridine ring is the major factor that governs the coenzyme activity.Abbreviations NADP+ 1, N6-etheno-nicotinamide adenine dinucleotide phosphate - NHDP+ nicotinamide-hypoxanthine dinucleotide phosphate - APADP+ 3-acetylpyridine-adenine dinucleotide phosphate - SNADP+ thionicotinamide-adenine dinucleotide phosphate - AADP+ 3-aminopyridine-adenine dinucleotide phosphate - 23NADPc+ -nicotinamide adenine dinucleotide 2: 3-cyclic monophosphate - 3NADP+ -nicotinamide adenine dinucleotide 3-phosphate - 2AMP adenosine 2-monophosphate - 3AMP adenosine 3-monophosphate - 23AMPc adenosine 2: 3 monophosphate cyclic - A adenosine - RuBP ribulose 1,5-bisphosphate - SCF-MO Self-Consistent Field-Molecular Orbitals (method)  相似文献   

9.
Evidence for a multiple subunit composition of plant NAD malic enzyme   总被引:4,自引:0,他引:4  
Malate dehydrogenase (decarboxylating) (EC 1.1.1.39) was purified to near homogeneity from both a C3 plant, Solanum tuberosum, and a CAM plant, Crassula argentea. Sodium dodecyl sulfate-gel electrophoresis of both enzymes revealed an alpha,beta subunit composition with corresponding molecular mass assignments of 61,000 and 55,000 daltons. Isoelectric focusing under native conditions showed only one constituent malic enzyme form with an isoelectric point of 5.1. No evidence of additional isoenzymes was found. Urea isoelectric focusing showed the alpha subunit to be more acidic than the beta subunit. Peptide mapping by limited proteolysis with Staphylococcus aureus V-8 protease, trypsin, and endoproteinase Arg-C eliminated the possibility that a precursor-product relationship may have existed between the two subunits and demonstrated that they each possess unique primary sequences. Further support for this conclusion was obtained when significant differences in the contents of glutamic acid, isoleucine, and arginine were revealed by amino acid analysis of the isolated subunits. There was no apparent activity associated with the separated subunits (as resolved by urea-DEAE chromatography), but activity could be found in a reconstituted system, thereby indicating an (alpha,beta)n protomeric configuration. This is the first case where malic enzyme has been conclusively shown to be constructed from nonidentical subunits. This phenomenon has been observed only for the NAD malic enzyme isolated from plants.  相似文献   

10.
When frozen plasma membranes isolated from maize seedling roots are thawed, a significant portion of GTP-binding activity goes into solution. The GTP-binding protein was purified by ion exchange chromatography on Mono-Q and gel filtration on Superose 6. Its molecular weight was estimated at 61 kDa by gel filtration. The same molecular weight was obtained upon solubilization of the GTP-binding protein with cholic acid followed by gel filtration in the presence of this detergent. SDS-PAGE demonstrated that the isolated GTP-binding protein consists of two types of subunit of molecular weights 27 kDa and 34 kDa.  相似文献   

11.
NADP-linked malic enzyme from Escherichia coli W contains 7 cysteinyl residues per enzyme subunit. The reactivity of sulfhydryl (SH) groups of the enzyme was examined using several SH reagents, including 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) and N-ethylmaleimide (NEM). 1. Two SH groups in the native enzyme subunit reacted with DTNB (or NEM) with different reaction rates, accompanied by a complete loss of the enzyme activity. The second-order modification rate constant of the "fast SH group" with DTNB coincided with the second-order inactivation rate constant of the enzyme by the reagent, suggesting that modification of the "fast SH group" is responsible for the inactivation. When the enzyme was denatured in 4 M guanidine HCl, all the SH groups reacted with the two reagents. 2. Althoug the inactivation rate constant was increased by the addition of Mg2+, an essential cofactor in the enzyme reaction, the modification rate constant of the "fast SH group" was unaffected. The relationship between the number of SH groups modified with DTNB or NEM and the residual enzyme activity in the absence of Mg2+ was linear, whereas that in the presence of Mg2+ was concave-upwards. These results suggest that the Mg2+-dependent increase in the inactivation rate constant is not the result of an increase in the rate constant of the "fast FH group" modification. 3. The absorption spectrum of the enzyme in the ultraviolet region was changed by addition of Mg2+. The dissociation constant of the Mg2+-enzyme complex obtained from the Mg2+- dependent increment of the difference absorption coincided with that obtained from the Mg2+- dependent enhancement of NEM inactivation. 4. Both the inactivation rate constant and the modification rate constant of the "fast SH group" were decreased by the addition of NADP+. The protective effect of NADP+ was increased by the addition of Mg2+. Based on the above results, the effects of Mg2+ on the SH-group modification are discussed from the viewpoint of conformational alteration of the enzyme.  相似文献   

12.
The activities of NADP-linked malic enzyme, hexose monophosphate shunt dehydrogenases and NADP-linked isocitrate dehydrogenase were studied during development of skeletal muscle and compared with those in the liver. The variation patterns of malic enzyme activity in the liver and in the skeletal muscle were very similar, however the amplitude of the changes was different. The enzyme activity increased approx 16-fold in the liver and about 2-fold in skeletal muscle at the same stage of development. In skeletal muscle the increase of the malic enzyme activity was only slightly higher than of lactic dehydrogenase and citrate synthase. Studies on the intracellular distribution of malic enzyme in skeletal muscle showed that both mitochondrial and extramitochondrial enzymes increased between 20th and 37th day of life, the increase of the extramitochondrial enzyme being more pronounced. The hexose monophosphate shunt dehydrogenases activity showed an increase in the liver but no change was observed in the skeletal muscle at the weaning time. Changes in the activity of the liver and skeletal muscle isocitrate dehydrogenase were not significant between 10th and 80th day of life. The results suggest that the malic enzyme in the liver is playing a different physiological role than in the skeletal muscle.  相似文献   

13.
Herring spermatozoa exhibit higher activity of malic enzyme (ME) than Atlantic salmon (Salmo salar), brown trout (Salmo trutta), carp (Cyprinus carpio) and African catfish (Clarias gariepinus) spermatozoa. Two molecular forms of ME are present in herring spermatozoa: an NAD-preferring malic enzyme with very high activity and an NADP-specific malic enzyme with much lower activity (ratio about 33:1). NAD-preferring ME was purified by chromatography on DEAE-Sepharose, Red Agarose and Sephadex G-200 to a specific activity of 36 μmol/min/mg protein and NADP-specific ME on DEAE-Sepharose and 2′5′-ADP Sepharose. The molecular mass for NAD-preferring and NADP-specific ME determined by SDS-PAGE was equal to 61 and 64 kDa, respectively. High activity of ME suggests adaptation of herring spermatozoa to metabolism at high oxygen tension for herring spawn.  相似文献   

14.
1. An NADP+-dependent malic enzyme was purified 7940-fold from the cytosolic fraction of human skeletal muscle with a final yield of 55.8% and a specific activity of 38.91 units/mg of protein. 2. The purification to homogeneity was achieved by ammonium sulfate fractionation, DEAE-Sepharose chromatography, affinity chromatography on NADP+-Agarose, gel filtration on Sephacryl S-300 and rechromatography on the affinity column. 3. Either Mn2+ or Mg2+ was required for activity: the pH optima with Mn2+ and Mg2+ were 8.1 and 7.5, respectively. The enzyme showed Michaelis-Menten kinetics. At pH 7.5 the apparent Km values with Mn2+ and Mg2+ for L-malate and NADP+ were 0.246 mM and 5.8 microM, and 0.304 mM and 5.8 microM, respectively. The Km values with Mn2+ for pyruvate, NADPH and bicarbonate were 8.6 mM, 6.1 microM and 22.2 mM, respectively. 4. The enzyme was also able to decarboxylate malate in the presence of NAD+. At pH 7.5 the reaction rate was approximately 10% of the rate in the presence of NADP+, with a Km value for NAD+ of 13.9 mM. 5. The following physical parameters were established: s0(20.w) = 10.48, Stokes' radius = 5.61 nm, pI = 5.72 Mr of the dissociated enzyme = 61,800. The estimates of the native apparent Mr yielded a value of 313,000 upon gel filtration, and 255,400 with f/fo = 1.33 by combining the chromatographic data with the sedimentation measurements. 6. The electron microscopy analysis of the uranyl acetate-stained enzyme revealed a tetrameric structure. 7. Investigations to detect sugar moieties indicated that the enzyme contains carbohydrate side chains, a property not previously reported for any other malic enzyme.  相似文献   

15.
A malic enzyme from a cell-free extract of Pseudomonas diminuta IFO-13182 was purified to electrophoretic homogeneity by DEAE-Sepharose, Sephacryl, and Blue-Sepharose chromatographies. The purified enzyme required either NAD+ or NADP+ as a coenzyme. From the results of coenzyme specificity, the enzyme should be classified as l-malate: NAD+ oxidoreductase (decarboxylating) [EC 1.1.1.39]. The purified enzyme was most active at pH 7.5 and 50°C and was stable in the pH range from 7.0 to 9.0. The isoelectric point was pH 4.3. Its molecular weight was 680,000 by COSMOSIL 5-Diol high performance liquid gel filtration on chromatography and 65,000 by SDS polyacrylamide gel electrophoresis. This indicates that the enzyme consisted of 10 subunits. The malic enzyme activity with NADP+ was about twice that measured with NAD+.  相似文献   

16.
17.
Purification and properties of apple fruit malic enzyme   总被引:3,自引:2,他引:1       下载免费PDF全文
Dilley DR 《Plant physiology》1966,41(2):214-220
Malic enzyme was isolated and purified from mature apple fruits (Malus sylvestris, Miller) by utilizing procedures probably applicable to other soluble enzymes in this and similar tissues.  相似文献   

18.
Phosphoenolpyruvate carboxylase has been purified to homogeneity from maize (Zea mays L. var. Golden Cross Bantam T51) leaves. The ratio of specific activities in crude extracts and the purified enzyme suggests that the enzyme is a major soluble protein in the tissue. The enzyme has a sedimentation coefficient (s20,w) of 12.3S and a molecular weight, determined by sedimentation equilibrium, of 400,000 daltons. Dissociation of the enzyme and electrophoresis on dodecyl sulfate polyacrylamide gels yields a single stained band which corresponds to a subunit weight of 99,000 daltons. Thus it appears that the native enzyme is composed of four identical or similar polypeptide chains.  相似文献   

19.
Primary structure of the maize NADP-dependent malic enzyme   总被引:15,自引:0,他引:15  
Chloroplast-localized NADP-dependent malic enzyme (EC 1.1.1.40) (NADP-ME) provides a key activity for the carbon 4 fixation pathway. In maize, nuclear encoded NADP-ME is synthesized in the cytoplasm as a precursor with a transit peptide that is removed upon transport into the chloroplast stroma. We present here the complete nucleotide sequence for a 2184-base pair full-length maize NADP-ME cDNA. The predicted precursor protein is 636 amino acids long with a Mr of 69,800. There is a strong codon bias found in the amino-terminal portion of NADP-ME that is present in genes for the other enzymes of the C-4 photosynthetic pathway. The NADP-ME transit peptide has general features common to other known chloroplast stroma transit peptides. Comparison of mature maize NADP-ME to the amino acid sequences of known malic enzymes shows two conserved dinucleotide-binding sites. There is a third highly conserved region of unknown function. On the basis of amino acid sequence similarity, the maize chloroplastic enzyme is more closely related to eukaryotic cytosolic isoforms of malic enzyme than to prokaryotic isoforms. We discuss the functional and evolutionary relationship between the chloroplastic and cytosolic forms of NADP-ME.  相似文献   

20.
The kinetic mechanism of NADP-dependent malic enzyme purified from maize leaves was studied in the physiological direction. Product inhibition and substrate analogues studies with 3 aminopyridine dinucleotide phosphate and tartrate indicate that the enzyme reaction follows a sequential ordered Bi-Ter kinetic mechanism. NADP is the leading substrate followed by l-malate and the products are released in the order of CO2, pyruvate and NADPH. The enzyme also catalyzes a slow, magnesium-dependent decarboxylation of oxaloacetate and reduction of pyruvate and oxaloacetate in the presence of NADPH to produce l-lactate and l-malate, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号