首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the hard α-keratins of wool are recognized as members of the intermediate filaments by sequence comparison thus for all attempts on reconstitution of wool α-keratin in filaments in vitro have failed. Here we show the oxidative sulphitolysis rather than the previously used S-carboxymethylation is the method of choice to prepare α-keratin derivatives suitable for assembly experiments. Once the protecting S-sulpho group is removed by 2-mercaptoethanol in vitro filaments formation can be induced. Electron micrographs show filaments with a diameter of 7–11 nm as in all other intermediate filaments. Thus, filament formation of α-keratins does not require the presence of matrix proteins.  相似文献   

2.
3.
The assembly of intermediate filaments is a fundamental property of the central rod domain of the individual subunit proteins. This rod domain, with its high propensity for α-helix formation, is the common and identifying feature of this family of proteins. Assembly occurs in vitro in the absence of other proteins or exogenous sources of energy; in vivo, it appears as if other factors, as yet poorly understood, modulate the assembly of intermediate filaments. Parallel, in-register dimers form via coiled-coil interactions of the rod domain. Tetramers may form from staggered arrays of parallel or antiparallel arrangements of dimers. Higher-order polymerization, which occurs spontaneously if the ionic strength of a mixture of dimers and tetramers is raised, proceeds rapidly through poorly described intermediates to the final 10 nm filament. This process is dependent on and modulated by the non-α-helical end domains, as well as those amino acids present at the very beginning and end of the rod domain. The interactions governing tetramer formation are most probably the same ones that are responsible for the lateral and longitudinal associations within intermediate filaments.  相似文献   

4.
Functions of intermediate filaments   总被引:24,自引:0,他引:24  
  相似文献   

5.
Recent amino acid sequence data have revealed that the microfibrils in hard α-keratin contain proteins with highly significant homologies and closely similar structural characteristics to the intermediate filament (IF) proteins known as desmin and vimentin. This result implies that microfibrils in hard α-keratin may be classified as a member of the IF and that the major features of these various filamentous structures are the same. Consequently, data obtained using X-ray diffraction, electron microscopy, amino acid sequence structural analysis and physicochemical techniques have been collated from the hitherto diverse fields of keratin and IF structure and used to formulate a more detailed model for the 7–8 nm diameter filaments than has previously been possible. Two models consisting of four-chain units arranged with the helical symmetry deduced for hard α-keratin1 (Fraser et al. J. Mol. Biol. 1976, 108, 435–452) are in accord with the data. The structural unit comprises an oppositely directed pair of molecules each consisting of a two-stranded parallel-chain coiled-coil rope of length ~45 nm stabilized by both interchain and intermolecular ionic interactions. For a perfectly regular structure the filament may be likened either to a seven-stranded cable with a supercoil pitch length of about 345 nm (pitch angle ~2.9°), or a ten-stranded cable (Fraser, R. D. B. and MacRae, T. P. Polymer 1973, 14, 61–67) with a supercoil pitch length of about 1293 nm (pitch angle ~0.8°). The models also provide some insight into the self-assembly mechanism of the IF.  相似文献   

6.
7.
A periodic ultrastructure in intermediate filaments   总被引:26,自引:0,他引:26  
Intermediate sized filaments reconstituted in vitro from purified desmin, epidermal keratin and the Mr 68,000 protein of neurofilaments were examined after high resolution metal shadowing. The filaments demonstrate a marked longitudinal periodicity of about 21 nm. This is the first procedure that allows detection of a periodic substructure in these filaments using the electron microscope.  相似文献   

8.
9.
Molecular architecture of intermediate filaments   总被引:17,自引:0,他引:17  
Together with microtubules and actin microfilaments, approximately 11 nm wide intermediate filaments (IFs) constitute the integrated, dynamic filament network present in the cytoplasm of metazoan cells. This network is critically involved in division, motility and other cellular processes. While the structures of microtubules and microfilaments are known in atomic detail, IF architecture is presently much less understood. The elementary 'building block' of IFs is a highly elongated, rod-like dimer based on an alpha-helical coiled-coil structure. Assembly of cytoplasmic IF proteins, such as vimentin, begins with a lateral association of dimers into tetramers and gradually into the so-called unit-length filaments (ULFs). Subsequently ULFs start to anneal longitudinally, ultimately yielding mature IFs after a compaction step. For nuclear lamins, however, assembly starts with a head-to-tail association of dimers. Recently, X-ray crystallographic data were obtained for several fragments of the vimentin dimer. Based on the dimer structure, molecular models of the tetramer and the entire filament are now a possibility.  相似文献   

10.
Apoptosis and keratin intermediate filaments   总被引:11,自引:0,他引:11  
Intermediate filament (IF) proteins utilize central alpha-helical domains to generate polymeric fibers intermediate in size between actin microfilaments and microtubules. The regions flanking the central structural domains have diverged greatly to permit IF proteins to adopt specialized functions. Keratins represent the largest two groups of IF proteins. Most keratins serve structural functions in hair or epidermis. Intracellular epidermal keratins also provide strength to epithelial sheets. The intracellular type I keratins and other IF proteins are cleaved by caspases during apoptosis to ensure the disposal of the relatively insoluble cellular components. However, recent studies have also revealed an unexpected protective role for keratin 8 during TNF and Fas mediated apoptosis. Evidence for possible functions of keratins both upstream and downstream of apoptotic signaling are considered.  相似文献   

11.
The animal cell cytoskeleton consists of three interconnected filament systems: actin-containing microfilaments (MFs), microtubules (MTs), and the lesser known intermediate filaments (IFs). All IF proteins share a common tripartite domain structure and the ability to assemble into 8-12 nm wide filaments. Electron microscopy data suggest that IFs are built according to a completely different plan from that of MFs and MTs. IFs are known to impart mechanical stability to cells and tissues but, until recently, the biomechanical properties of single IFs were unknown. However, with the discovery of naturally occurring micrometer-wide IF bundles and the development of new methodologies to mechanically probe single filaments, it is now possible to propose a more unified view of IF biomechanics. Unlike MFs and MTs, single IFs can now be described as flexible, extensible and tough, which has important implications for our understanding of cell and tissue mechanics. Furthermore, the molecular mechanisms at play when IFs are deformed point toward a pivotal role for them in mechanotransduction.  相似文献   

12.
13.
Dual roles of intermediate filaments in apoptosis   总被引:4,自引:0,他引:4  
New roles have emerged recently for intermediate filaments (IFs), namely in modulating cell adhesion and growth, and providing resistance to various forms of stress and to apoptosis. In this context, we first summarize findings on the IF association with the cell response to mechanical stress and growth stimulation, in light of growth-related signaling events that are relevant to death-receptor engagement. We then address the molecular mechanisms by which IFs can provide cell resistance to apoptosis initiated by death-receptor stimulation and to necrosis triggered by excessive oxidative stress. In the same way, we examine IF involvement, along with cytolinker participation, in sequential caspase-mediated protein cleavages that are part of the overall cell death execution, particularly those that generate new functional IF protein fragments and uncover neoantigen markers. Finally, we report on the usefulness of these markers as diagnostic tools for disease-related aspects of apoptosis in humans. Clearly, the data accumulated in recent years provide new and significant insights into the multiple functions of IFs, particularly their dual roles in cell response to apoptotic insults.  相似文献   

14.
《The Journal of cell biology》1993,122(6):1323-1335
We report here on the in vivo assembly of alpha-internexin, a type IV neuronal intermediate filament protein, in transfected cultured cells, comparing its assembly properties with those of the neurofilament triplet proteins (NF-L, NF-M, and NF-H). Like the neurofilament triplet proteins, alpha-internexin coassembles with vimentin into filaments. To study the assembly characteristics of these proteins in the absence of a preexisting filament network, transient transfection experiments were performed with a non-neuronal cell line lacking cytoplasmic intermediate filaments. The results showed that only alpha-internexin was able to self-assemble into extensive filamentous networks. In contrast, the neurofilament triplet proteins were incapable of homopolymeric assembly into filamentous arrays in vivo. NF-L coassembled with either NF-M or NF-H into filamentous structures in the transfected cells, but NF-M could not form filaments with NF-H. alpha- internexin could coassemble with each of the neurofilament triplet proteins in the transfected cells to form filaments. When all but 2 and 10 amino acid residues were removed from the tail domains of NF-L and NF-M, respectively, the resulting NF-L and NF-M deletion mutants retained the ability to coassemble with alpha-internexin into filamentous networks. These mutants were also capable of forming filaments with other wild-type neurofilament triplet protein subunits. These results suggest that the tail domains of NF-L and NF-M are dispensable for normal coassembly of each of these proteins with other type IV intermediate filament proteins to form filaments.  相似文献   

15.
Intermediate filaments include the nuclear lamins, which are universal in metazoans, and the cytoplasmic intermediate filaments, which are much more varied and form cell type-specific networks in animal cells. Until now, it has been thought that insects harbor lamins only. This view is fundamentally challenged by the discovery, reported in BMC Biology, of an intermediate filament-like cytoplasmic protein, isomin, in the hexapod Isotomurus maculatus. Here we briefly review the history of research on intermediate filaments, and discuss the implications of this latest finding in the context of what is known of their structure and functions.  相似文献   

16.
The molecular biology of intermediate filaments   总被引:84,自引:0,他引:84  
P M Steinert  A C Steven  D R Roop 《Cell》1985,42(2):411-420
  相似文献   

17.
Dynamics of the neuronal intermediate filaments   总被引:8,自引:6,他引:2       下载免费PDF全文
We have analyzed the dynamics of neuronal intermediate filaments in living neurons by using the method of photobleaching of fluorescently- labeled neurofilament L protein and immunoelectron microscopy of incorporation sites of biotinylated neurofilament L protein. Low-light- level imaging and photobleaching of growing axons of mouse sensory neurons did not affect the rate of either axonal growth or the addition of intermediate filament structures at the axon terminal, suggesting that any perturbations caused by these optical methods would be minimal. After laser photobleaching, recovery of fluorescence did occur slowly with a recovery half-time of 40 min. Furthermore, we observed a more rapid fluorescence recovery in growing axons than in quiescent ones, indicating a growth-dependent regulation of the turnover rate. Incorporation sites of biotin-labeled neurofilament L protein were localized as numerous discrete sites along the axon, and they slowly elongated to become continuous arrays 24 h after injection. Collectively, these results indicate that neuronal intermediate filaments in growing axons turn over within the small area of the axoplasm possibly by the mechanism of lateral and segmental incorporation of new subunits.  相似文献   

18.
Nucleus-associated intermediate filaments from chicken erythrocytes   总被引:14,自引:9,他引:5       下载免费PDF全文
Chicken erythrocyte nuclei prepared by isolation in isotonic KCl and Nonidet P-40 detergent were found to contain numerous attached filaments with a mean diameter of 11.0 nm. In polypeptide content and solubility properties, they resembled the vimentin type of intermediate filament found in cells of mesenchymal origin. Examination of their association with the nucleus suggests that more than a simple membrane attachment is involved.  相似文献   

19.
Desmin intermediate filaments play important role in the mechanical integrity and elasticity of muscle cells. The mechanisms of how desmin contributes to cellular mechanics are little understood. Here, we explored the nanomechanics of desmin by manipulating individual filaments with atomic force microscopy. In complex, hierarchical force responses we identified recurring features which likely correspond to distinct properties and structural transitions related to desmin's extensibility and elasticity. The most frequently observed feature is an initial unbinding transition that corresponds to the removal of approximately 45-nm-long coiled-coil dimers from the filament surface with 20-60 pN forces in usually two discrete steps. In tethers longer than 60 nm we most often observed force plateaus studded with bumps spaced approximately 16 nm apart, which are likely caused by a combination of protofilament unzipping, dimer-dimer sliding and coiled-coil-domain unfolding events. At high stresses and strains non-linear, entropic elasticity was dominant, and sometimes repetitive sawtooth force transitions were seen which might arise because of slippage within the desmin protofilament. A model is proposed in which mechanical yielding is caused by coiled-coil domain unfolding and dimer-dimer sliding/slippage, and strain hardening by the entropic elasticity of partially unfolded protofilaments.  相似文献   

20.
Polycystin-1 interacts with intermediate filaments   总被引:7,自引:0,他引:7  
Polycystin-1, the protein defective in a majority of patients with autosomal dominant polycystic kidney disease, is a ubiquitously expressed multi-span transmembrane protein of unknown function. Subcellular localization studies found this protein to be a component of various cell junctional complexes and to be associated with the cytoskeleton, but the specificity and nature of such associations are not known. To identify proteins that interact with the polycystin-1 C-tail (P1CT), this segment was used as bait in a yeast two-hybrid screening of a kidney epithelial cell library. The intermediate filament (IF) protein vimentin was identified as a strong polycystin-1-interacting partner. Cytokeratins K8 and K18 and desmin were also found to interact with P1CT. These interactions were mediated by coiled-coil motifs in polycystin-1 and IF proteins. Vimentin, cytokeratins K8 and K18, and desmin also bound directly to P1CT in GST pull-down and in in vitro filament assembly assays. Two observations confirmed these interactions in vivo: (i) a cell membrane-anchored form of recombinant P1CT decorated the IF network and was found to associate with the cytoskeleton in detergent-solubilized cells and (ii) endogenous polycystin-1 distributed with IF at desmosomal junctions. Polycystin-1 may utilize this association for structural, storage, or signaling functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号