首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the molecular characterization of the Posterior sex combs-Suppressor 2 of zeste region of Drosophila melanogaster. The distal breakpoint of the Aristapedioid inversion divides the region into two parts. We have molecularly mapped the lesions associated with several loss of function mutations in the Polycomb group gene Posterior sex combs (Psc) proximal to this breakpoint. In addition, we have found that lesions associated with several loss of function mutations in the Suppressor 2 of zeste [Su(z)2] gene lie distal to this breakpoint. Since the breakpoint does not cause a loss of function in either gene, no essential sequences are shared by these two neighboring genes. There are three dominant gain of function mutations in the region that result in abnormal bristle development. We find that all three juxtapose foreign DNA sequences upstream of the Su(z)2 gene, and that at least two of these mutations (Arp1 and vgD) behave genetically as gain of function mutations in Su(z)2. Northern and in situ hybridization analyses show that the mutations result in increased accumulation of the Su(z)2 mRNA, which we argue is responsible for the bristle loss phenotype.  相似文献   

2.
The Polycomb (Pc) group genes of Drosophila are negative regulators of homeotic genes, but individual loci have pleiotropic phenotypes. It has been suggested that Pc group genes might form a regulatory hierarchy, or might be members of a multimeric complex that obeys the law of mass action. Recently, it was shown that polyhomeotic (ph) immunoprecipitates in a multimeric complex that includes Pc. Here, we show that duplications of ph suppress homeotic transformations of Pc and Pcl, supporting a mass-action model for Pc group function. We crossed ph alleles to all members of the Polycomb group, and to E(Pc) and Su(z)2 to look for synergistic effects. We observed extragenic noncomplementation between ph(503) and Pc, Psc(1) and Su(z)2(1) in females, and between ph(409) and Sce(1), Scm(D1) and E(z)(1) mutations in males, suggesting that these gene products might interact directly with ph. Males hemizygous for a temperature-sensitive allele, ph(2), are lethal when heterozygous with mutants in Asx, Pc, Pcl, Psc, Sce and Scm, and with E(Pc) and Su(z)2. Mutations in trithorax group genes were not able to suppress the lethality of ph(2)/Y; Psc(1)/+ males. ph(2) was not lethal with extra sex combs, E(z), super sex combs (sxc) or l(4)102EFc heterozygotes, but did cause earlier lethality in embryos homozygous for E(z), sxc and l(4)102EFc. However, ph(503) did not enhance homeotic phenotypes of esc heterozygotes derived from homozygous esc(-) mothers. We examined the embryonic phenotypes of ph(2) embryos that were lethal when heterozygous or homozygous for other mutations. Based on this phenotypic analysis, we suggest that ph may perform different functions in conjunction with differing subsets of Pc group genes.  相似文献   

3.
The Posterior Sex Combs (Psc) gene of Drosophila is a member of the Polycomb (Pc) group of transregulatory genes. Previous analyses of the function of this gene in Drosophila embryogenesis have been hampered by the lack of a null mutation. We recently isolated a mutation that deletes the 5' end of the Psc gene. This allele appears to be a null mutation, and we have used it to determine the Psc zygotic null phenotype and to look at the interactions of a null allele of Psc with five other Pc group mutations. We find evidence for transformations along both the anterior-posterior and dorsal-ventral axes in embryos of a variety of genotypes that include a null mutation in Psc. The phenotypes of embryos that are doubly mutant for a null allele of Psc and a mutation in a second Pc group gene show dramatic synergistic effects, but in their specifics they are dependent on the identity of the second Pc group gene. This is different from the relatively uniform phenotypes seen among double mutants that contained the allele Psc1, which has both gain and loss of function properties. The differences in the phenotypes of the doubly mutant embryos allow us to eliminate one class of molecular models to explain the dramatic synergism seen with mutations in this group of genes.  相似文献   

4.
M. C. Soto  T. B. Chou    W. Bender 《Genetics》1995,140(1):231-243
The genes of the Polycomb group (PcG) repress the genes of the bithorax and Antennapedia complexes, among others. To observe a null phenotype for a PcG gene, one must remove its maternal as well as zygotic contribution to the embryo. Five members of the PcG group are compared here: Enhancer of Polycomb [E(Pc)], Additional sex combs (Asx), Posterior sex combs (Psc), Suppressor of zeste 2 [Su(z)2] and Polycomblike (Pcl). The yeast recombinase (FLP) system was used to induce mitotic recombination in the maternal germline. Mutant embryos were analyzed by staining with antibodies against six target genes of the PcG. The loss of the maternal component leads to enhanced homeotic phenotypes and to unique patterns of misexpression. E(Pc) and Su(z)2 mutations had only subtle effects on the target genes, even when the maternal contributions were removed. Asx and Pcl mutants show derepression of the targets only in specific cell types. Psc shows unusual effects on two of the targets, Ultrabithorax and abdominal-A. These results show that the PcG genes do not act only in a common complex or pathway; they must have some independent functions.  相似文献   

5.
6.
C. T. Wu  M. Howe 《Genetics》1995,140(1):139-181
The zeste(1) (z(1)) mutation of Drosophila melanogaster produces a mutant yellow eye color instead of the wild-type red. Genetic and molecular data suggest that z(1) achieves this change by altering expression of the wild-type white gene in a manner that exhibits transvection effects. There exist suppressor and enhancer mutations that modify the z(1) eye color, and this paper summarizes our studies of those belonging to the Suppressor 2 of zeste complex [Su(z)2-C]. The Su(z)2-C consists of at least three subregions called Psc (Posterior sex combs), Su(z)2 and Su(z)2D (Distal). The products of these subregions are proposed to act at the level of chromatin. Complementation analyses predict that the products are functionally similar and interacting. The alleles of Psc define two overlapping phenotypic classes, the hopeful and hapless. The distinctions between these two classes and the intragenic complementation seen among some of the Psc alleles are consistent with a multidomain structure for the product of Psc. Psc is a member of the homeotic Polycomb group of genes. A general discussion of the Polycomb and trithorax group of genes, position-effect variegation, transvection, chromosome pairing and chromatin structure is presented.  相似文献   

7.
Certain Polycomb group (PcG) genes are themselves targets of PcG complexes. Two of these constitute the Drosophila Psc-Su(z)2 locus, a region whose chromatin is enriched for H3K27me3 and contains several putative Polycomb response elements (PREs) that bind PcG proteins. To understand how PcG mechanisms regulate this region, the repressive function of the PcG protein binding sites was analyzed using reporter gene constructs. We find that at least two of these are functional PREs that can silence a reporter gene in a PcG-dependent manner. One of these two can also display anti-silencing activity, dependent on the context. A PcG protein binding site near the Psc promoter behaves not as a silencer but as a down-regulation module that is actually stimulated by the Pc gene product but not by other PcG products. Deletion of one of the PREs increases the expression level of Psc and Su(z)2 by twofold at late embryonic stages. We present evidence suggesting that the Psc-Su(z)2 locus is flanked by insulator elements that may protect neighboring genes from inappropriate silencing. Deletion of one of these regions results in extension of the domain of H3K27me3 into a region containing other genes, whose expression becomes silenced in the early embryo.  相似文献   

8.
The ability of a chimeric HP1-Polycomb (Pc) protein to bind both to heterochromatin and to euchromatic sites of Pc protein binding was exploited to detect stable protein-protein interactions in vivo. Previously, we showed that endogenous Pc protein was recruited to ectopic heterochromatic binding sites by the chimeric protein. Here, we examine the association of other Pc group (Pc-G) proteins. We show that Posterior sex combs (Psc) protein also is recruited to heterochromatin by the chimeric protein, demonstrating that Psc protein participates in direct protein-protein interaction with Pc protein or Pc-associated protein. In flies carrying temperature-sensitive alleles of Enhancer of zeste[E(z)] the general decondensation of polytene chromosomes that occurs at the restrictive temperature is associated with loss of binding of endogenous Pc and chimeric HP1-Polycomb protein to euchromatin, but binding of HP1 and chimeric HP1-Polycomb protein to the heterochromatin is maintained. The E(z) mutation also results in the loss of chimera-dependent binding to heterochromatin by endogenous Pc and Psc proteins at the restrictive temperature, suggesting that interaction of these proteins is mediated by E(z) protein. A myc-tagged full-length Suppressor 2 of zeste [Su(z)2] protein interacts poorly or not at all with ectopic Pc-G complexes, but a truncated Su(z)2 protein is strongly recruited to all sites of chimeric protein binding. Trithorax protein is not recruited to the heterochromatin by the chimeric HP1-Polycomb protein, suggesting either that this protein does not interact directly with Pc-G complexes or that such interactions are regulated. Ectopic binding of chimeric chromosomal proteins provides a useful tool for distinguishing specific protein-protein interactions from specific protein-DNA interactions important for complex assembly in vivo.  相似文献   

9.
L Rastelli  C S Chan    V Pirrotta 《The EMBO journal》1993,12(4):1513-1522
Polycomb group genes are necessary for maintaining homeotic genes repressed in appropriate parts of the body plan. Some of these genes, e.g. Psc, Su(z)2 and E(z), are also modifiers of the zeste-white interaction. The products of Psc and Su(z)2 were immunohistochemically detected at 80-90 sites on polytene chromosomes. The chromosomal binding sites of these two proteins were compared with those of zeste protein and two other Polycomb group proteins, Polycomb and polyhomeotic. The five proteins co-localize at a large number of sites, suggesting that they frequently act together on target genes. In larvae carrying a temperature sensitive mutation in another Polycomb group gene, E(z), the Su(z)2 and Psc products become dissociated from chromatin at non-permissive temperatures from most but not all sites, while the binding of the zeste protein is unaffected. The polytene chromosomes in these mutant larvae acquire a decondensed appearance, frequently losing characteristic constrictions. These results suggest that the binding of at least some Polycomb group proteins requires interactions with other members of the group and, although zeste can bind independently, its repressive effect on white involves the presence of at least some of the Polycomb group proteins.  相似文献   

10.
In both Drosophila and vertebrates, spatially restricted expression of HOX genes is controlled by the Polycomb group (PcG) repressors. Here we characterize a novel Drosophila PcG gene, Suppressor of zeste 12 (Su(z)12). Su(z)12 mutants exhibit very strong homeotic transformations and Su(z)12 function is required throughout development to maintain the repressed state of HOX genes. Unlike most other PcG mutations, Su(z)12 mutations are strong suppressors of position-effect variegation (PEV), suggesting that Su(z)12 also functions in heterochromatin-mediated repression. Furthermore, Su(z)12 function is required for germ cell development. The Su(z)12 protein is highly conserved in vertebrates and is related to the Arabidopsis proteins EMF2, FIS2 and VRN2. Notably, EMF2 is a repressor of floral homeotic genes. These results suggest that at least some of the regulatory machinery that controls homeotic gene expression is conserved between animals and plants.  相似文献   

11.
12.
Mutations in genes of the Polycomb (Pc) group cause abnormal segmental development due to ectopic expression of the homeotic products of the Antennapedia and bithorax complexes. Here the requirements for Pc group genes in controlling the abdA and AbdB products of the bithorax complex are described. Embryos containing mutations in the genes Polycomb (Pc), extra sex combs (esc), Enhancer of zeste [E(z)], polyhomeotic (ph), Sex comb on midleg (Scm), Polycomb-like (Pcl), Sex comb extra (Sce), Additional sex combs (Asx), Posterior sex combs (Psc) and pleiohomeotic (pho) were examined. In every case, both abdA and AbdB are expressed outside of their normal domains along the anterior-posterior (A-P) axis, consistent with these Pc group products acting in a single pathway or molecular complex. The earliest detectable ectopic expression is highest in the parasegments immediately adjacent to the normal expression boundary. Surprisingly, in the most severe Pc group mutants, the earliest ectopic AbdB is distributed in a pair-rule pattern. At all stages, ectopic abdA in the epidermis is highest along the anterior edges of the parasegments, in a pattern that mimics the normal abdA cell-specific pattern. These examples of highly patterned mis-expression show that Pc group mutations do not cause indiscriminate activation of homeotic products. We suggest that the ectopic expression patterns result from factors that normally activate abdA and AbdB only in certain parasegments, but that in Pc group mutants these factors gain access to regulatory DNA in all parasegments.  相似文献   

13.
14.
The Polycomb (Pc) group of genes are required for maintenance of cell determination in Drosophila melanogaster. At least 11 Pc group genes have been described and there may be up to 40; all are required for normal regulation of homeotic genes, but as a group, their phenotypes are rather diverse. It has been suggested that the products of Pc group genes might be members of a heteromeric complex that acts to regulate the chromatin structure of target loci. We examined the phenotypes of adult flies heterozygous for every pairwise combination of Pc group genes in an attempt to subdivide the Pc group functionally. The results support the idea that Additional sex combs (Asx), Pc, Polycomblike (Pcl), Posterior sex combs (Psc), Sex combs on midleg (Scm), and Sex combs extra (Sce) have similar functions in some imaginal tissues. We show genetic interactions among extra sex combs (esc) and Asx, Enhancer of Pc, Pcl, Enhancer of zeste E(z), and super sex combs and reassess the idea that most Pc group genes function independently of esc. Most duplications of Pc group genes neither exhibit anterior transformations nor suppress the extra sex comb phenotype of Pc group mutations, suggesting that not all Pc group genes behave as predicted by the mass-action model. Surprisingly, duplications of E(z) enhance homeotic phenotypes of esc mutants. Flies with increasing doses of esc + exhibit anterior transformations, but these are not enhanced by mutations in trithorax group genes. The results are discussed with respect to current models of Pc group function.  相似文献   

15.
The Polycomb (Pc) group of genes are required for maintenance of cell determination in Drosophila melanogaster. At least 11 Pc group genes have been described and there may be up to 40; all are required for normal regulation of homeotic genes, but as a group, their phenotypes are rather diverse. It has been suggested that the products of Pc group genes might be members of a heteromeric complex that acts to regulate the chromatin structure of target loci. We examined the phenotypes of adult flies heterozygous for every pairwise combination of Pc group genes in an attempt to subdivide the Pc group functionally. The results support the idea that Additional sex combs (Asx), Pc, Polycomblike (Pcl), Posterior sex combs (Psc), Sex combs on midleg (Scm), and Sex combs extra (Sce) have similar functions in some imaginal tissues. We show genetic interactions among extra sex combs (esc) and Asx, Enhancer of Pc, Pcl, Enhancer of zeste E(z), and super sex combs and reassess the idea that most Pc group genes function independently of esc. Most duplications of Pc group genes neither exhibit anterior transformations nor suppress the extra sex comb phenotype of Pc group mutations, suggesting that not all Pc group genes behave as predicted by the mass-action model. Surprisingly, duplications of E(z) enhance homeotic phenotypes of esc mutants. Flies with increasing doses of esc + exhibit anterior transformations, but these are not enhanced by mutations in trithorax group genes. The results are discussed with respect to current models of Pc group function.  相似文献   

16.
The Posterior Sex Combs (Psc) gene of Drosophila is a member of the Polycomb (Pc) group of transregulatory genes. Previous analyses of the function of this gene in Drosophila em-bryogenesis have been hampered by the lack of a null mutation. We recently isolated a mutation that deletes the 5′ end of the Psc gene. This allele appears to be a null mutation, and we have used it to determine the Psc zygotic null phenotype and to look at the interactions of a null allele of Psc with five other Pc group mutations. We find evidence for transformations along both the anterior-posterior and dorsal-ventral axes in embryos of a variety of genotypes that include a null mutation in Psc. The phenotypes of embryos that are doubly mutant for a null allele of Psc and a mutation in a second Pc group gene show dramatic synergistic effects, but in their specifics they are dependent on the identify of the second Pc group gene. This is different from the relatively uniform phenotypes seen among double mutants that contained the allele Psc1, which has both gain and loss of function properties. The differences in the phenotypes of the doubly mutant embryos allow us to eliminate one class of molecular models to explain the dramatic synergism seen with mutations in this group of genes.  相似文献   

17.
18.
19.
Polycomb group (PcG) genes of Drosophila are negative regulators of homeotic gene expression required for maintenance of determination. Sequence similarity between Polycomb and Su(var)205 led to the suggestion that PcG genes and modifiers of position-effect variegation (PEV) might function analogously in the establishment of chromatin structure. If PcG proteins participate directly in the same process that leads to PEV, PcG mutations should suppress PEV. We show that mutations in E(Pc), an unusual member of the PcG, suppress PEV of four variegating rearrangements: In(l)wm4, B(SV), T(2;3)Sb(V) and In(2R)bw(VDe2). Using reversion of a Pelement insertion, deficiency mapping, and recombination mapping as criteria, homeotic effects and suppression of PEV associated with E(Pc) co-map. Asx is an enhancer of PEV, whereas nine other PcG loci do not affect PEV. These results support the conclusion that there are fewer similarities between PcG genes and modifiers of PEV than previously supposed. However, E(Pc) appears to be an important link between the two groups. We discuss why Asx might act as an enhancer of PEV.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号